@article{oai:ipsj.ixsq.nii.ac.jp:00017124, author = {松縄, 哲明 and 野里, 博和 and 坂無, 英徳 and 村川, 正宏 and 高橋, 栄一 and 寺澤, 恒男 and 田中, 稔彦 and 須賀, 治 and 樋口, 哲也 and Tetsuaki, Matsunawa and Hirokazu, Nosato and Hidenori, Sakanashi and Masahiro, Murakawa and Eiichi, Takahashi and Tsuneo, Terasawa and Toshihiko, Tanaka and Osamu, Suga and Tetsuya, Higuchi}, issue = {SIG6(TOM17)}, journal = {情報処理学会論文誌数理モデル化と応用(TOM)}, month = {Mar}, note = {我々はすでに,光リソグラフィにおけるマスク製造コストの削減を目指し,適応型光近接効果補正(適応型OPC)技術を提案している.本論文では,適応型OPC 技術の計算時間をより削減するために,新たにInfluential 領域を提案する.Influential 領域とは,マスクパターンを構成するセル内部のパターン情報によって定義される領域で,セル内部のパターンに対応する光近接効果の領域を定めるものである.この技術により,従来の適応型OPC では一律に定めていた光近接効果領域を厳密に指定することで,計算が必要な領域を低減させることができる.この結果,従来の適応型OPC 手法と比べてOPC 計算時間を削減することが可能となる.既存のLSI パターンに提案手法を適用した検証実験の結果,計算時間の大幅な削減が可能となる見通しを得た., This paper proposes a new approach to optical proximity correction (OPC) utilizing an influential area to achieve optimal OPC feature generation for the full-chip area at fast operational speeds. We have demonstrated the adaptive OPC technique using an optimization method after layout design. The influential area is an area defined by pattern information for a cell constituting a mask pattern. This determines the area of the optical proximity effect (OPE), which corresponds to the cell pattern. The proposed method can reduce the calculation area by strictly defining the OPE area for conventional adaptive OPC methods. Accordingly, the proposed method can reduce OPC calculation times compared to conventional adaptive OPC techniques. The effectiveness of this approach in terms of both reduced times for accurate simulations and repeated modification of OPCed features is demonstrated through computational experiments.}, pages = {110--119}, title = {Influential 領域を導入した適応型光近接効果補正技術の提案}, volume = {48}, year = {2007} }