{"updated":"2025-01-20T09:00:44.091663+00:00","links":{},"id":169422,"created":"2025-01-19T00:40:12.032698+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00169422","sets":["1164:2735:8608:8853"]},"path":["8853"],"owner":"11","recid":"169422","title":["A New Parallelization Model using Complex Grid Partitioning for Density-based Spatial Clustering Algorithm on a Multi-Core CPU"],"pubdate":{"attribute_name":"公開日","attribute_value":"2016-07-18"},"_buckets":{"deposit":"cef8bf9b-c76a-48e7-9321-15189b74ba21"},"_deposit":{"id":"169422","pid":{"type":"depid","value":"169422","revision_id":0},"owners":[11],"status":"published","created_by":11},"item_title":"A New Parallelization Model using Complex Grid Partitioning for Density-based Spatial Clustering Algorithm on a Multi-Core CPU","author_link":["340339","340337","340340","340342","340341","340338","340336","340335"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"A New Parallelization Model using Complex Grid Partitioning for Density-based Spatial Clustering Algorithm on a Multi-Core CPU"},{"subitem_title":"A New Parallelization Model using Complex Grid Partitioning for Density-based Spatial Clustering Algorithm on a Multi-Core CPU","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"2016-07-18","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"Graduate School of Information Sciences, Hiroshima City University/JSPS"},{"subitem_text_value":"Graduate School of Information Sciences, Hiroshima City University"},{"subitem_text_value":"Graduate School of Information Sciences, Hiroshima City University"},{"subitem_text_value":"Graduate School of Information Sciences, Hiroshima City University"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Graduate School of Information Sciences, Hiroshima City University / JSPS","subitem_text_language":"en"},{"subitem_text_value":"Graduate School of Information Sciences, Hiroshima City University","subitem_text_language":"en"},{"subitem_text_value":"Graduate School of Information Sciences, Hiroshima City University","subitem_text_language":"en"},{"subitem_text_value":"Graduate School of Information Sciences, Hiroshima City University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/169422/files/IPSJ-MPS16109004.pdf","label":"IPSJ-MPS16109004.pdf"},"date":[{"dateType":"Available","dateValue":"2018-07-18"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-MPS16109004.pdf","filesize":[{"value":"695.1 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"17"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"0f023107-7bfa-43e2-812a-77474fb8af67","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2016 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Tatsuhiro, Sakai"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Keiichi, Tamura"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Kohei, Misaki"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Hajime, Kitakami"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Tatsuhiro, Sakai","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Keiichi, Tamura","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Kohei, Misaki","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Hajime, Kitakami","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10505667","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8833","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"Recently, the sizes and volumes of spatial databases have been increasing not only because of the popularity of geographical data, but also because of the popularity of geosocial media. A density-based spatial clustering algorithm is one of the simplest but most robust clustering techniques for geospatial data. Therefore, the speedup for the processing of density-based spatial clustering algorithms is one of the most important challenges. In this paper, we propose a new parallelization model using complex grid partitioning for density-based spatial clustering algorithm on a multi-core CPU. The main technique of the new parallelization model is that it forms complex spatial partition, n order to speed up the processing. The experimental results show that our new model outperforms a conventional data parallelization model.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"Recently, the sizes and volumes of spatial databases have been increasing not only because of the popularity of geographical data, but also because of the popularity of geosocial media. A density-based spatial clustering algorithm is one of the simplest but most robust clustering techniques for geospatial data. Therefore, the speedup for the processing of density-based spatial clustering algorithms is one of the most important challenges. In this paper, we propose a new parallelization model using complex grid partitioning for density-based spatial clustering algorithm on a multi-core CPU. The main technique of the new parallelization model is that it forms complex spatial partition, n order to speed up the processing. The experimental results show that our new model outperforms a conventional data parallelization model.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"4","bibliographic_titles":[{"bibliographic_title":"研究報告数理モデル化と問題解決(MPS)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2016-07-18","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"4","bibliographicVolumeNumber":"2016-MPS-109"}]},"relation_version_is_last":true,"weko_creator_id":"11"}}