{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00016876","sets":["934:935:973:975"]},"path":["975"],"owner":"1","recid":"16876","title":["The Theory of Twiners and Linear Parametricity"],"pubdate":{"attribute_name":"公開日","attribute_value":"2001-07-15"},"_buckets":{"deposit":"beaa47fc-5410-4a40-b254-dbc50d47df02"},"_deposit":{"id":"16876","pid":{"type":"depid","value":"16876","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"The Theory of Twiners and Linear Parametricity","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"The Theory of Twiners and Linear Parametricity"},{"subitem_title":"The Theory of Twiners and Linear Parametricity","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"発表概要","subitem_subject_scheme":"Other"}]},"item_type_id":"3","publish_date":"2001-07-15","item_3_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"Graduate School of Mathematics The University of Tokyo"}]},"item_3_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Graduate School of Mathematics, The University of Tokyo","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/16876/files/IPSJ-TPRO4207016.pdf"},"date":[{"dateType":"Available","dateValue":"2003-07-15"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-TPRO4207016.pdf","filesize":[{"value":"26.9 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"0","billingrole":"5"},{"tax":["include_tax"],"price":"0","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"15"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"d93c6734-3fb5-4e25-b2bb-b55c738eccca","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2001 by the Information Processing Society of Japan"}]},"item_3_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Ryu, Hasegawa"}],"nameIdentifiers":[{}]}]},"item_3_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Ryu, Hasegawa","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_3_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA11464814","subitem_source_identifier_type":"NCID"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_6501","resourcetype":"journal article"}]},"item_3_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1882-7802","subitem_source_identifier_type":"ISSN"}]},"item_3_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"Linear parametricity is a principle of polymorphic programming languages dictated in the context of linear logic. We show that linear parametricity induces the fixed points of operators having both positive and negative occurrences of parameters. This kind of fixed points are required by semantics of functional programming languages. The traditional style to achieve this requirement employs Scott's denotational semantics which is an application of a mathematical theory of Scott domains. Our emphasis lies in that the same effect can be derived from linear parametricity which is a single computer-theoretic principle rather than from mathematical properties of exotic topology of Scott domains. Consistency of linear parametricity is rather a naive property. In fact the standard notion of parametricity which was studied by the author and other researchers in early nineties conflicts with the existence of fixed points of the kind we are studying in this work. Linear parametricity is wearker than standard parametricity and does not invoke conflict. We verify this fact by forming a sound model of linear parametricity. To this end we develop the theory of twiners which is an extension of the theory of analytic functors introduced by Joyal in the field of enumerative combinatorics.","subitem_description_type":"Other"}]},"item_3_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"92","bibliographic_titles":[{"bibliographic_title":"情報処理学会論文誌プログラミング(PRO)"}],"bibliographicPageStart":"92","bibliographicIssueDates":{"bibliographicIssueDate":"2001-07-15","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"SIG07(PRO11)","bibliographicVolumeNumber":"42"}]},"relation_version_is_last":true,"weko_creator_id":"1"},"id":16876,"updated":"2025-01-22T23:38:37.013665+00:00","links":{},"created":"2025-01-18T22:50:01.594912+00:00"}