{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00016413","sets":["581:927:933"]},"path":["933"],"owner":"1","recid":"16413","title":["複素数の累乗根および逆数を求める反復法について"],"pubdate":{"attribute_name":"公開日","attribute_value":"1979-01-15"},"_buckets":{"deposit":"0da65870-9c64-4e8d-b2eb-a2ebd47101fa"},"_deposit":{"id":"16413","pid":{"type":"depid","value":"16413","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"複素数の累乗根および逆数を求める反復法について","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"複素数の累乗根および逆数を求める反復法について"},{"subitem_title":"On Iterative Methods of Calculating Radicals and the Inverse of a Complex Number","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"ショートノート","subitem_subject_scheme":"Other"}]},"item_type_id":"2","publish_date":"1979-01-15","item_2_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"東京大学工学部計数工学科"}]},"item_2_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Faculty of Engineering, The Univesity of Tokyo","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/16413/files/IPSJ-JNL2001015.pdf"},"date":[{"dateType":"Available","dateValue":"1981-01-15"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-JNL2001015.pdf","filesize":[{"value":"226.4 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"8"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"825bab39-a721-42ec-b992-e0c3c7891a69","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 1979 by the Information Processing Society of Japan"}]},"item_2_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"佐藤幸平"}],"nameIdentifiers":[{}]}]},"item_2_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Kohei, Sato","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_2_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00116647","subitem_source_identifier_type":"NCID"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_6501","resourcetype":"journal article"}]},"item_2_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1882-7764","subitem_source_identifier_type":"ISSN"}]},"item_2_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"Oでない複素数αの平方根・逆数を求めるNewton法の定義関数は何れも z^2の1次変換になっている.同じ変換をz^N(N≧3)に施せば Newton法と同じ収束施囲で√<a> 1/aにN次収束する反復法の定義関数が得られる.各ステップの計算時間を考慮すると その内N=3の場合だけがNewton法より能率が良い.αのn(≧3)乗根を計算するNewton 法は その仕方では一般化できないが.Konigの式を用いてN次収束する反復法が作られる.N=3の場合は常にNewton法よりも計算時間が少ない.nが大きいほど.N=3の場合の有利さは増大し N=4以上の場合もnの増加につれ次々にNewton法より有利になってゆく.","subitem_description_type":"Other"}]},"item_2_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"93","bibliographic_titles":[{"bibliographic_title":"情報処理学会論文誌"}],"bibliographicPageStart":"91","bibliographicIssueDates":{"bibliographicIssueDate":"1979-01-15","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicVolumeNumber":"20"}]},"relation_version_is_last":true,"weko_creator_id":"1"},"id":16413,"updated":"2025-01-22T23:53:14.386055+00:00","links":{},"created":"2025-01-18T22:49:41.524306+00:00"}