{"updated":"2025-01-23T00:03:33.212790+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00016029","sets":["581:899:901"]},"path":["901"],"owner":"1","recid":"16029","title":["複合長方形領域の最小分割"],"pubdate":{"attribute_name":"公開日","attribute_value":"1983-09-15"},"_buckets":{"deposit":"13734dca-037d-4f94-be1b-fa3a2de9e0e1"},"_deposit":{"id":"16029","pid":{"type":"depid","value":"16029","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"複合長方形領域の最小分割","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"複合長方形領域の最小分割"},{"subitem_title":"Minimum Partitioning of Rectilinear Regions","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"論文","subitem_subject_scheme":"Other"}]},"item_type_id":"2","publish_date":"1983-09-15","item_2_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"早稲田大学理工学部電子通信学科"},{"subitem_text_value":"早稲田大学理工学部電子通信学科"},{"subitem_text_value":"早稲田大学理工学部電子通信学科"},{"subitem_text_value":"日本電信電話公社"}]},"item_2_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Deparment of Electronics and Communication Engineering, School of Science and Engineering, Waseda University","subitem_text_language":"en"},{"subitem_text_value":"Deparment of Electronics and Communication Engineering, School of Science and Engineering, Waseda University","subitem_text_language":"en"},{"subitem_text_value":"Deparment of Electronics and Communication Engineering, School of Science and Engineering, Waseda University","subitem_text_language":"en"},{"subitem_text_value":"Nippon Telegraph and TelephonePublic Corporation.","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/16029/files/IPSJ-JNL2405012.pdf"},"date":[{"dateType":"Available","dateValue":"1985-09-15"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-JNL2405012.pdf","filesize":[{"value":"516.6 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"8"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"8e2f7d58-b3a1-4242-959c-d6af4f50baca","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 1983 by the Information Processing Society of Japan"}]},"item_2_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"大附, 辰夫"},{"creatorName":"佐藤政生"},{"creatorName":"橘, 昌良"},{"creatorName":"鳥居, 司郎"}],"nameIdentifiers":[{}]}]},"item_2_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Tatsuo, Ohtski","creatorNameLang":"en"},{"creatorName":"Masao, Sato","creatorNameLang":"en"},{"creatorName":"Masayoshi, Tachibana","creatorNameLang":"en"},{"creatorName":"Shirou, Torii","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_2_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00116647","subitem_source_identifier_type":"NCID"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_6501","resourcetype":"journal article"}]},"item_2_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1882-7764","subitem_source_identifier_type":"ISSN"}]},"item_2_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"複合長方形領域を重複なく最小個の長方形に分割する問題を扱う.ここでは 複合長方形領域が中空部分(窓)を含んだり 複数個の連結成分から成っているような一般的な場合を考察する.分割手順は二つのアルゴリズムから成っている.1番目のアルゴリズムは 縮退していない複合長方形領域を最小個の長方形に分割するものである.同じXまたはY座標上の二つの凹点間が領域内であるとき 複合長方形領域は縮退しているといい そうでない場合には縮退していないという.2番目のアルゴリズムは 与えられた(縮退している)複合長方形領域を最適にいくつかの縮退していない複合長方形領域に分解するものである.複合長方形領域の頂点の数をnとすると 1番目のアルゴリズムの計算複雑度はO(n log n)となり 2番目のアルゴリズムはO(n^5/2)となることを報告する.ここで扱う問題は LSI のアートワーク処理 画像処理 図形データベースなどにおける基本的問題の一つである.","subitem_description_type":"Other"}]},"item_2_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"653","bibliographic_titles":[{"bibliographic_title":"情報処理学会論文誌"}],"bibliographicPageStart":"647","bibliographicIssueDates":{"bibliographicIssueDate":"1983-09-15","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"5","bibliographicVolumeNumber":"24"}]},"relation_version_is_last":true,"weko_creator_id":"1"},"created":"2025-01-18T22:49:24.905650+00:00","id":16029,"links":{}}