Item type |
FIT(1) |
公開日 |
2008-08-20 |
タイトル |
|
|
言語 |
en |
|
タイトル |
E-055 Annotating Semantic Structure of Web Text based on CDL.nl |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_5794 |
|
資源タイプ |
conference paper |
著者所属 |
|
|
|
東大 |
著者所属 |
|
|
|
東大 |
著者所属 |
|
|
|
東大 |
著者所属 |
|
|
|
東京工科大 |
著者所属(英) |
|
|
|
en |
|
|
The University of Tokyo |
著者所属(英) |
|
|
|
en |
|
|
The University of Tokyo |
著者所属(英) |
|
|
|
en |
|
|
The University of Tokyo |
著者所属(英) |
|
|
|
en |
|
|
Tokyo University of Technology |
著者名 |
イェン, ユイラン
松尾, 豊
石塚, 満
横井, 俊夫
|
著者名(英) |
Yan, Yulan
Matsuo, Yutaka
Ishizuka, Mitsuru
Yokoi, Toshio
|
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Confronting the challenges of annotating naturally occurring text into a semantically structured form to facilitate automatic information extraction, based on the Concept Description Language for Natural Language (CDL.nl) which is intended to describe the concept structure of text using a set of pre-defined semantic relations, we develop a parser to add a new layer of semantic annotation of natural language sentences as an extension of SRL (Semantic Role Labeling). The parsing task is a relation extraction process with two steps: relation detection and relation classification. We advance a hybrid approach using different methods for two steps: first, based on dependency analysis, a rule-based method is presented to detect all entity pairs between each pair for which there exists a relationship; secondly, we use a feature-based method to assign a CDL.nl relation to each detected entity pair using Support Vector Machine. We report the preliminary experimental results carried out on our manual dataset annotated with CDL.nl relations. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AA1242354X |
書誌情報 |
情報科学技術フォーラム講演論文集
巻 7,
号 2,
p. 265-266,
発行日 2008-08-20
|
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |