@article{oai:ipsj.ixsq.nii.ac.jp:00147431,
 author = {今野, 慎介 and 中村, 嘉隆 and 白石, 陽 and 高橋, 修 and Shinsuke, Konno and Yoshitaka, Nakamura and Yoh, Shiraishi and Osamu, Takahashi},
 issue = {1},
 journal = {情報処理学会論文誌},
 month = {Jan},
 note = {近年,携帯端末における認証操作による煩わしさを軽減するために,様々な行動的特徴を用いた本人認証法が研究されている.その1つとして,歩行動作を用いて本人認証を行う「歩行認証」が存在する.本研究は,この歩行認証の精度を向上させるための方法を提案するものである.携帯端末には様々なセンサが搭載されている.本研究で提案する手法は,加速度センサと角速度センサから計測された信号を比較することで,あらかじめ登録されたテンプレートと入力信号の間で複数の距離を取得する.得られた複数の距離はユーザ個人性をなくし,全ユーザ共通の識別器により判定することで,歩行動作による認証精度を向上させるものである.被験者50人に対して実験を行い,提案手法はセンサ単独で認証を行う手法と比較し,認証精度が向上することを確認できた., In recent years, in order to reduce the inconvenience that caused by the authentication operation in the portable terminals, personal authentication methods based on various behavior characteristics has been studied. Gait-based authentication which authenticates users based on their walking behavior is one of them. In this paper, we present the method which improves the accuracy of gait-based authentication. Previous studies measured gait motion by using one wearable sensor, such as acceleration sensor. However they have not showed sufficient accuracy in case where the sensor has been in one's pants front pocket. This paper proposes a method which used both acceleration sensor and angular velocity sensor to improve the accuracy of gait-based authentication. We construct human authentication system based on machine learning. Multiple distances computed from values measured by each sensors are eliminates the individuality and are used machine learning for common user classifier. In experiments, we validated with 50 subjects. The experimental results indicate the proposed method improve the authentication accuracy in comparison with the single sensor based authentication methods.},
 pages = {109--122},
 title = {複数のウェアラブルセンサを用いた歩行動作による本人認証法の精度向上},
 volume = {57},
 year = {2016}
}