{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00146287","sets":["1164:3865:7902:8385"]},"path":["8385"],"owner":"11","recid":"146287","title":["リアルタイム行動認識システム開発のためのデータ収集と分析"],"pubdate":{"attribute_name":"公開日","attribute_value":"2015-11-25"},"_buckets":{"deposit":"a0f94a5a-b3bd-44c8-8c8b-ec98d9ce4d3c"},"_deposit":{"id":"146287","pid":{"type":"depid","value":"146287","revision_id":0},"owners":[11],"status":"published","created_by":11},"item_title":"リアルタイム行動認識システム開発のためのデータ収集と分析","author_link":["227840","227841","227844","227842","227843"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"リアルタイム行動認識システム開発のためのデータ収集と分析"}]},"item_type_id":"4","publish_date":"2015-11-25","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"奈良先端科学技術大学院大学"},{"subitem_text_value":"奈良先端科学技術大学院大学"},{"subitem_text_value":"奈良先端科学技術大学院大学"},{"subitem_text_value":"奈良先端科学技術大学院大学"},{"subitem_text_value":"奈良先端科学技術大学院大学"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Nara Institute of Science and Technology","subitem_text_language":"en"},{"subitem_text_value":"Nara Institute of Science and Technology","subitem_text_language":"en"},{"subitem_text_value":"Nara Institute of Science and Technology","subitem_text_language":"en"},{"subitem_text_value":"Nara Institute of Science and Technology","subitem_text_language":"en"},{"subitem_text_value":"Nara Institute of Science and Technology","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/146287/files/IPSJ-MBL15077009.pdf","label":"IPSJ-MBL15077009.pdf"},"date":[{"dateType":"Available","dateValue":"2017-11-25"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-MBL15077009.pdf","filesize":[{"value":"3.2 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"35"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"d7b752dc-a0c2-4dd5-9d5e-f7b6df55114b","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2015 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"中川, 愛梨"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"諏訪, 博彦"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"藤本, まなと"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"荒川, 豊"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"安本, 慶一"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA11851388","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8817","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"近年,屋内での生活行動を自動認識する研究が盛んに行われており,省エネ家電制御や高齢者見守りシステム,コンシェルジュ機能など生活を支援するサービスへの応用が期待されている.コンシェルジュ機能においては,リアルタイムでの行動認識が必要になる.例えば,お風呂上がりには空調の温度を下げるという機能を実現するためには,入浴が終了したということを素早く認識しなければならない.そこで,本研究では,10 秒以内に行動を認識することを目標とする.しかし,認識までの時間が短くなると,得られる情報量が少なくなり,精度が悪くなるという課題がある.著者らは先行研究において,10 種類の行動を 90%以上の精度で認識できることを確認しているが,センシングデータの粒度が 30 秒に 1 回と粗く,認識に使うデータの時間窓を短くすると,精度が 80%程度まで低下するという問題を認識している.この課題に対しては,現時点の情報に加えて過去の情報も用いることにより,精度の向上を目指す.本稿では,この問題に対処するため,新たに 1 秒毎にデータを計測可能なセンシングシステムを構築し,過去のデータを特徴量として使用することで,10 秒といった短い時間窓でも高精度に行動の認識が可能な方法を提案する.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"5","bibliographic_titles":[{"bibliographic_title":"研究報告モバイルコンピューティングとパーベイシブシステム(MBL)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2015-11-25","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"9","bibliographicVolumeNumber":"2015-MBL-77"}]},"relation_version_is_last":true,"weko_creator_id":"11"},"id":146287,"updated":"2025-01-20T12:57:40.080162+00:00","links":{},"created":"2025-01-19T00:21:46.121042+00:00"}