@techreport{oai:ipsj.ixsq.nii.ac.jp:00145005, author = {韓, 先花 and 陳, 延偉 and Xian-Hua, Han and Yen-Wei, Chen}, issue = {12}, month = {Sep}, note = {近年,食事の乱れや健康意識の向上に伴い,食生活の管理が重要となっている.そこで,携帯電話のカメラ機能と用いて撮影された食事画像から自動で食事内容の認識を行なうことで,健康を容易に促進できるシステムの構築を目指している.高精度な食事画像を認識するために画像表現としてコードブークモデル及びその改善法を幅広く用いられ,ある程度の認識精度を得ることが検証された.しかし,実用食事ログを構築するため,更なる認識精度の向上を必要がある.それで,本研究では近年様々な分野で高い汎化性能を検証された Deep Convolutional Neural Network (DCNN) を用いた食事画像認識を行い,大幅な精度の向上を検証された., In Recent year, with the increasing of unhealthy diets which will threaten people's life due to the various resulted risks such as heart stroke, liver trouble and so on, the maintaining for healthy life has attracted much attention and then how to manage the dietary life is becoming more and more important. In this research, we aim to construct an auto-recognition system of food images and keep the daily food-log records which will contribute to manage dietary life. In order to achieve the acceptable recognition performance of the food images, we propose to apply deep learning network, which have been validated to have surprised performance comparing with the state-of-the-art methods in many understanding applications.}, title = {Deep Convolutional Neural Networkによる食事画像認識}, year = {2015} }