{"created":"2025-01-19T00:20:22.339320+00:00","updated":"2025-01-20T18:44:47.588890+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00144610","sets":["1164:2240:7894:8313"]},"path":["8313"],"owner":"11","recid":"144610","title":["ランダム行列と固有ベクトルのアンダーソン局在化"],"pubdate":{"attribute_name":"公開日","attribute_value":"2015-07-28"},"_buckets":{"deposit":"489fa34a-3b9e-46ef-81ec-fd6b823f4a14"},"_deposit":{"id":"144610","pid":{"type":"depid","value":"144610","revision_id":0},"owners":[11],"status":"published","created_by":11},"item_title":"ランダム行列と固有ベクトルのアンダーソン局在化","author_link":["219265","219264"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"ランダム行列と固有ベクトルのアンダーソン局在化"},{"subitem_title":"Random Matrices and Anderson's Localication of Eigenvectors","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"数値計算","subitem_subject_scheme":"Other"}]},"item_type_id":"4","publish_date":"2015-07-28","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"首都大学東京・数理情報科学専攻"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Department of Mathematics and Information Sciences, Tokyo Metropolitan University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/144610/files/IPSJ-HPC15150012.pdf","label":"IPSJ-HPC15150012.pdf"},"date":[{"dateType":"Available","dateValue":"2017-07-28"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-HPC15150012.pdf","filesize":[{"value":"4.0 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"14"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"3958fd8a-e191-4eee-95e8-64bc1827f9bd","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2015 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"村上, 弘"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Hiroshi, Murakami","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10463942","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8841","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"大規模な行列が 3 重対角あるいは幅の狭い帯行列で,行列要素の値に乱雑性があると固有ベクトルに局在化が生じる.局在化したベクトルは,添字がある狭い区間の外部に在る要素の値は小さく無視できる.この現象は固体物性科学の分野では以前から 「アンダーソン局在」 として良く知られている.この現象の行列固有値問題の解法への応用を考察する.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"When a large size matrix is tridiagonal or narrow banded and also the matrix contain randomness in the elements, eigenvectors of the matrix are localized. Those elements of a localized vector are small and negligible in values whose induces are outside of a certain narrow interval. This phenomenon has long been known well in the field of material science of solids as “Anderson's localization”. We consider applications of this phenomenon to the solution method of matrix eigenproblems.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"24","bibliographic_titles":[{"bibliographic_title":"研究報告ハイパフォーマンスコンピューティング(HPC)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2015-07-28","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"12","bibliographicVolumeNumber":"2015-HPC-150"}]},"relation_version_is_last":true,"weko_creator_id":"11"},"id":144610,"links":{}}