@techreport{oai:ipsj.ixsq.nii.ac.jp:00142406, author = {横井, 創磨 and 佐藤, 一誠 and 中川, 裕志 and Soma, Yokoi and Issei, Sato and Hiroshi, Nakagawa}, issue = {5}, month = {Jun}, note = {大規模な文書データに対して頻度分布のロングテールに位置する単語は情報量が少ないため,トピックモデルと呼ばれる単語の統計モデルを分布の背後に仮定することで,検索エンジンやオンライン広告などの性能が向上することが知られている.しかし,このような場面において用いられるトピックモデルは,予め仮定する潜在トピック数を高次元に設定する必要があり,計算速度や必要メモリ量が問題になる.トピックモデルの最も基本的なモデルである LDA に対して,大量の文書を扱える SGRLD LDA や高次元のトピックを扱える AliasLDA などの手法が存在するが,大量の文書・高次元のトピックを同時に達成するためには非効率的なアルゴリズムを巨大な計算機リソースを用いて実行しなくてはならない.そこで本研究では,これらの手法をうまく組み合わせることで効率的な計算を可能にする.また,勾配計算において更新の方法を工夫することにより,余分な空間を使わずに期待値計算を行うことができる.実験により,提案手法は大規模データかつ高次元トピックでも実行可能であり,さらに既存手法と比較して速く,特に高次元トピックでは 10 倍以上高速であることを示す., It is known that topic model with high dimensional topics improves IR performance like search engines and online advertisements, because it helps to model long-tail words in large scale corpora. However, high dimensional topics with large corpora cause 2 problems: computational performance and memory requirement. For the fundamental topic model, LDA, SGRLD LDA is proposed to scale to large corpora and AliasLDA to accelerate computing topics. In this paper, we propose a method for both topic computation and data scalability, by combining these techniques. Also careful calculation of gradients reduces required space to expectations. Experiments demonstrate that our method is scalable for both corpus size and topic dimension, also archives faster runtime speed compared to the existing approach, especially 10+ times faster on high dimensional topics setting.}, title = {大規模データ・高次元トピックに対応したトピックモデル}, year = {2015} }