ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータビジョンとイメージメディア(CVIM)
  3. 2015
  4. 2015-CVIM-197

Quad-Tree based Image Encoding Methods for Data-Adaptive Visual Feature Learning

https://ipsj.ixsq.nii.ac.jp/records/141863
https://ipsj.ixsq.nii.ac.jp/records/141863
bf4db6ea-471f-4599-ac0f-145484262c15
名前 / ファイル ライセンス アクション
IPSJ-CVIM15197033.pdf IPSJ-CVIM15197033.pdf (2.4 MB)
Copyright (c) 2015 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2015-05-11
タイトル
タイトル Quad-Tree based Image Encoding Methods for Data-Adaptive Visual Feature Learning
タイトル
言語 en
タイトル Quad-Tree based Image Encoding Methods for Data-Adaptive Visual Feature Learning
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
IST, Graduate School of Informatics, Kyoto University
著者所属
IST, Graduate School of Informatics, Kyoto University
著者所属
IST, Graduate School of Informatics, Kyoto University
著者所属(英)
en
IST, Graduate School of Informatics, Kyoto University
著者所属(英)
en
IST, Graduate School of Informatics, Kyoto University
著者所属(英)
en
IST, Graduate School of Informatics, Kyoto University
著者名 Cuicui, Zhang

× Cuicui, Zhang

Cuicui, Zhang

Search repository
Xuefeng, Liang

× Xuefeng, Liang

Xuefeng, Liang

Search repository
Takashi, Matsuyama

× Takashi, Matsuyama

Takashi, Matsuyama

Search repository
著者名(英) Cuicui, Zhang

× Cuicui, Zhang

en Cuicui, Zhang

Search repository
Xuefeng, Liang

× Xuefeng, Liang

en Xuefeng, Liang

Search repository
Takashi, Matsuyama

× Takashi, Matsuyama

en Takashi, Matsuyama

Search repository
論文抄録
内容記述タイプ Other
内容記述 Visual feature learning is fundamental to many computer vision tasks. State-of-art methods adopt an image block based multilayer framework to learn hierarchical feature representations. However, the image block is not adaptive for low-level feature extraction and the image pyramid based hierarchical models are neither adaptive nor flexible enough to learn high-level features. To solve these problems, this thesis exploits the image spatial and hierarchical structure using Quad-Trees and employs them for local feature analysis and for hierarchical feature learning. To evaluate the reliability of our methods, we also conduct feature learning in other challenging situations: feature learning with small training data and feature learning in dynamic environments (moving camera videos). Face recognition and motion segmentation are utilized as research backgrounds for algorithm evaluation. Experimental results demonstrate the effectiveness of our methods.
論文抄録(英)
内容記述タイプ Other
内容記述 Visual feature learning is fundamental to many computer vision tasks. State-of-art methods adopt an image block based multilayer framework to learn hierarchical feature representations. However, the image block is not adaptive for low-level feature extraction and the image pyramid based hierarchical models are neither adaptive nor flexible enough to learn high-level features. To solve these problems, this thesis exploits the image spatial and hierarchical structure using Quad-Trees and employs them for local feature analysis and for hierarchical feature learning. To evaluate the reliability of our methods, we also conduct feature learning in other challenging situations: feature learning with small training data and feature learning in dynamic environments (moving camera videos). Face recognition and motion segmentation are utilized as research backgrounds for algorithm evaluation. Experimental results demonstrate the effectiveness of our methods.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11131797
書誌情報 研究報告コンピュータビジョンとイメージメディア(CVIM)

巻 2015-CVIM-197, 号 33, p. 1-16, 発行日 2015-05-11
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8701
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 19:14:08.365002
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3