{"id":132917,"updated":"2025-01-20T23:09:17.070969+00:00","links":{},"created":"2025-01-19T00:11:38.091183+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00132917","sets":["6504:8134:8140"]},"path":["8140"],"owner":"1","recid":"132917","title":["四元数積分曲線による3D点列の内挿"],"pubdate":{"attribute_name":"公開日","attribute_value":"1997-09-24"},"_buckets":{"deposit":"310a9385-966a-4d92-a89a-c14f1939882b"},"_deposit":{"id":"132917","pid":{"type":"depid","value":"132917","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"四元数積分曲線による3D点列の内挿","author_link":[],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"四元数積分曲線による3D点列の内挿"},{"subitem_title":"Interpolation of 3D Points by Quaternion Integral Curves","subitem_title_language":"en"}]},"item_type_id":"22","publish_date":"1997-09-24","item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_22_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"静岡大学工学部機械工学科計測情報講座"},{"subitem_text_value":"静岡大学工学部機械工学科計測情報講座"}]},"item_22_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Sizuoka University","subitem_text_language":"en"},{"subitem_text_value":"Sizuoka University","subitem_text_language":"en"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/132917/files/KJ00001346254.pdf"},"date":[{"dateType":"Available","dateValue":"1997-09-24"}],"format":"application/pdf","filename":"KJ00001346254.pdf","filesize":[{"value":"145.1 kB"}],"mimetype":"application/pdf","accessrole":"open_date","version_id":"3c20d360-98a0-4830-be01-c931a94fe160","displaytype":"detail","licensetype":"license_note"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_5794","resourcetype":"conference paper"}]},"item_22_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00349328","subitem_source_identifier_type":"NCID"}]},"item_22_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"美しい(fair)あるいは\"見た目に心地よい(visually pleasing)\"曲面の生成は様々な分野で重要であり, 工業デザインやスタイリング分野では製品の良否を決定する主要因となっている. \"美しい\"曲面とは何か, どのような性質を持つべきかに緘する明確な数学的定義は存在しないが, 美しさを決定する要因として「曲率」や「曲率の変化率」が重要であることは共通の認識である. 曲線の方向ベクトルを4元数曲線を使って指定することが三浦[1]によって提案された. 文献[1]では, この指定法を利用して4元数積分曲線(quaternion integral: QI curve)を提案している. 本研究では, 4元数積分曲線によって, 3次元空間の点列を内挿する方法を提案する.","subitem_description_type":"Other"}]},"item_22_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"249","bibliographic_titles":[{"bibliographic_title":"全国大会講演論文集"}],"bibliographicPageStart":"248","bibliographicIssueDates":{"bibliographicIssueDate":"1997-09-24","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"インタフェース","bibliographicVolumeNumber":"第55回"}]},"relation_version_is_last":true,"weko_creator_id":"1"}}