{"created":"2025-01-18T22:47:24.058253+00:00","updated":"2025-01-23T01:17:44.476039+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00013268","sets":["581:729:731"]},"path":["731"],"owner":"1","recid":"13268","title":["AP1000におけるBiCGStab(l)法の有効性について"],"pubdate":{"attribute_name":"公開日","attribute_value":"1997-11-15"},"_buckets":{"deposit":"cec20cd4-7d4c-4c68-b3aa-2369ac29f4b1"},"_deposit":{"id":"13268","pid":{"type":"depid","value":"13268","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"AP1000におけるBiCGStab(l)法の有効性について","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"AP1000におけるBiCGStab(l)法の有効性について"},{"subitem_title":"Effectiveness of BiCGStab (l) Method on AP1000","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"論文","subitem_subject_scheme":"Other"}]},"item_type_id":"2","publish_date":"1997-11-15","item_2_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"慶應義塾大学理工学部"},{"subitem_text_value":"慶應義塾大学理工学部"}]},"item_2_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Faculty of Science and Technology, Keio University","subitem_text_language":"en"},{"subitem_text_value":"Faculty of Science and Technology, Keio University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/13268/files/IPSJ-JNL3811001.pdf"},"date":[{"dateType":"Available","dateValue":"1999-11-15"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-JNL3811001.pdf","filesize":[{"value":"1.6 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"8"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"8b8cbe8f-1cd6-46f7-a6b3-9d6296a9ac14","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 1997 by the Information Processing Society of Japan"}]},"item_2_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"野寺, 隆"},{"creatorName":"野口, 雄一郎"}],"nameIdentifiers":[{}]}]},"item_2_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Takashi, Nodera","creatorNameLang":"en"},{"creatorName":"Yuuichirou, Noguchi","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_2_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00116647","subitem_source_identifier_type":"NCID"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_6501","resourcetype":"journal article"}]},"item_2_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1882-7764","subitem_source_identifier_type":"ISSN"}]},"item_2_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"大規模で疎な非対称行列を係数とする連立1次方程式を解く積型反復解法の1つであるBiCGStab法は,1次のMR多項式を使用してBCG法の残差ノルムの収束を滑らかにしたものである.この算法は様々な問題に対して有効であり,一般にもよく知られている.近年,この方法を改良したBiCGStab2法やGP?BiCG法が提案されている.SleijpenとFokkema13)により提案されたBiCGStab (l)法はこれらの算法を一般化し,計算量を減らすように改良された算法である.本稿は分散メモリ型の並列計算機AP1000(富士通)を用いて,2階の偏微分方程式の境界値問題などの数値実験により,BiCGStab (l)法の有効性について検証し,この算法が優れた反復解法であることを確かめるとともに,並列計算に適した方法であることを述べる.","subitem_description_type":"Other"}]},"item_2_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"For solving the large and sparse non-symmetric linear systems of equations,BiCGStab method is known as one of the product type of iterative solvers.This method smoothes the residual norm of BCG method,using degree one MR(minimal residual)polynomial.The BiCGStab method is efficient in many cases and has been used for actual problems.Recently,BiCGStab2 method and GP-BiCG method which improved by the BiCGStab method,have been proposed.The BiCGStab(l)method,which is proposed by Sleijpen and Fokkema13),is generalized by these methods.This algorithm is also improved to decrease the amount of computational cost per iteration.In this paper,the BiCGStab(l)method and other related methods are parallelized on distributed memory machine Fujitsu AP1000.Results obtained from the numerical experiments,i.e.boundary value problems of 2nd order partial differental equations,etc.,show that BiCG-Stab(l)algorithm is effective iterative method and suitable for parallel computing.","subitem_description_type":"Other"}]},"item_2_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"2101","bibliographic_titles":[{"bibliographic_title":"情報処理学会論文誌"}],"bibliographicPageStart":"2089","bibliographicIssueDates":{"bibliographicIssueDate":"1997-11-15","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"11","bibliographicVolumeNumber":"38"}]},"relation_version_is_last":true,"item_2_alternative_title_2":{"attribute_name":"その他タイトル","attribute_value_mlt":[{"subitem_alternative_title":"数値計算"}]},"weko_creator_id":"1"},"id":13268,"links":{}}