@article{oai:ipsj.ixsq.nii.ac.jp:00012852,
 author = {曽根, 順治 and 今野晃市 and 千代倉, 弘明 and Junji, Sone and Kouichi, Konno and Hiroaki, Chiyokura},
 issue = {2},
 journal = {情報処理学会論文誌},
 month = {Feb},
 note = {非四辺形形状への曲面の内挿は Catmull-Clark分割などの曲面を分割する方法が用いられている. しかし  この方法では曲面数が増加し形状制御が難しい. また  凹形状への曲面の内挿はトリム曲面で対応する場合が多く  曲面の形状制御も難しかった. 本研究は  非四辺形領域を1枚のNBG (NURBS Boundary Gregory)パッチで内挿する方法を提案する. NBGパッチの要素であるS^u曲面およびS^v曲面は 1辺内のC^0頂点で領域をサブパッチに分割し  サブパッチ間の連続性を修正した後  それらのサブパッチを結合することにより構成される. 本手法を用いると  四辺形以上の非四辺形領域を1枚のNBGパッチで内挿できる. また  簡単な凹形状も1枚のNBGパッチで内挿できる., Catmull-Clark subdivision is widely used for surface interpolation of a non four sided area. In this method, shape control of the multiple suraces is difficult. Trimmed surface is used for interpolating a concave area and shape control of the trimmed surface was also difficult. In this research, we propose a method of interpolation of a non-four-sided (over 4) area using a single NBG (NURBS Boundary Gregory) patch. In this method, S^u or S^v is formed by subdividing the area into subpatches at C^0 continuous vertex and merging these subpatches after correcting the continuity. In this method, a non-four-sided (over 4) area can be interpolated by a single NBG patch. And a simple concave area can also be interpolated by a single NBG patch.},
 pages = {710--718},
 title = {NURBS境界Gregoryパッチによる非四辺形領域への曲面の内挿},
 volume = {40},
 year = {1999}
}