{"updated":"2025-01-21T01:18:41.175267+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00127523","sets":["6504:8078:8084"]},"path":["8084"],"owner":"1","recid":"127523","title":["三角形ベジエ曲面の法線ベクトル"],"pubdate":{"attribute_name":"公開日","attribute_value":"1995-03-15"},"_buckets":{"deposit":"453cb785-c59a-4449-8472-9c1259ecd1dd"},"_deposit":{"id":"127523","pid":{"type":"depid","value":"127523","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"三角形ベジエ曲面の法線ベクトル","author_link":[],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"三角形ベジエ曲面の法線ベクトル"},{"subitem_title":"Normal Vector on Triagular Bezier Surface","subitem_title_language":"en"}]},"item_type_id":"22","publish_date":"1995-03-15","item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_22_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"東京大学教養学部"}]},"item_22_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"College of Arts and Sciences, The University of Tokyo","subitem_text_language":"en"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/127523/files/KJ00001333905.pdf"},"date":[{"dateType":"Available","dateValue":"1995-03-15"}],"format":"application/pdf","filename":"KJ00001333905.pdf","filesize":[{"value":"138.1 kB"}],"mimetype":"application/pdf","accessrole":"open_date","version_id":"187b9817-07bb-4a80-87d3-da1d8d77a062","displaytype":"detail","licensetype":"license_note"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_5794","resourcetype":"conference paper"}]},"item_22_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00349328","subitem_source_identifier_type":"NCID"}]},"item_22_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"形状処理において自由曲面の処理技術には,未だ多くの問題が残されており,様々な研究がなされている.自由曲面の表現法の1つに三角形ベジエ曲面がある.この三角形ベジエ曲面は,ベジエ曲線の素直な拡張であり,変動減少性,アフィン不変性,凸包性,端点一致性など,様々な数学的特徴を備えている.このような特徴の中にホドグラフがある.ホドグラフとは,曲線ないし曲面の接ベクトルの始点を原点に置いたとき,終点の描く軌跡であり,曲線や曲面の1階微分の性質を表したものである.特に曲線の場合には,曲線間の接続問題や交点位置の探索などに有用である.一方,曲面の場合には,接ベクトルよりも法線ベクトルが必要となることが多いが,これを求めるのに適した方法がなかった.そこで,法線ベクトルの存在領域を円錐や6角錐などで包絡していた.前に,m×n次のテンソル積ベジエ曲面が(2m-1)×(2n-1)次のテンソル積ベジエ曲面となること,さらにその制御点を計算する手法を示した.本研究では,n次の三角形ベジエ曲面の法線ベクトルが(2n-2)次の三角形ベジエ曲面となることを示し,その制御点を計算する方法について述べる.","subitem_description_type":"Other"}]},"item_22_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"430","bibliographic_titles":[{"bibliographic_title":"全国大会講演論文集"}],"bibliographicPageStart":"429","bibliographicIssueDates":{"bibliographicIssueDate":"1995-03-15","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"データ処理","bibliographicVolumeNumber":"第50回"}]},"relation_version_is_last":true,"weko_creator_id":"1"},"created":"2025-01-19T00:07:01.063061+00:00","id":127523,"links":{}}