{"updated":"2025-01-23T01:33:41.705413+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00012619","sets":["581:703:710"]},"path":["710"],"owner":"1","recid":"12619","title":["適応的にlを変化させるBiCGStab(l)法"],"pubdate":{"attribute_name":"公開日","attribute_value":"1999-06-15"},"_buckets":{"deposit":"c1fcc308-0204-4d9e-a449-8fff61b67d62"},"_deposit":{"id":"12619","pid":{"type":"depid","value":"12619","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"適応的にlを変化させるBiCGStab(l)法","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"適応的にlを変化させるBiCGStab(l)法"},{"subitem_title":"BiCGStab (l) Method with Varying l in Adaption","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"論文","subitem_subject_scheme":"Other"}]},"item_type_id":"2","publish_date":"1999-06-15","item_2_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"慶應義塾大学大学院理工学研究科"},{"subitem_text_value":"慶應義塾大学理工学部"}]},"item_2_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Graduate School of Science and Technology, Keio University","subitem_text_language":"en"},{"subitem_text_value":"Faculty of Science and Technology, Keio University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/12619/files/IPSJ-JNL4006016.pdf"},"date":[{"dateType":"Available","dateValue":"2001-06-15"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-JNL4006016.pdf","filesize":[{"value":"1.2 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"8"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"edd3377c-6f32-4ff2-8165-e38ab9f77364","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 1999 by the Information Processing Society of Japan"}]},"item_2_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"森屋, 健太郎"},{"creatorName":"野寺, 隆"}],"nameIdentifiers":[{}]}]},"item_2_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Kentaro, Moriya","creatorNameLang":"en"},{"creatorName":"Takashi, Nodera","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_2_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00116647","subitem_source_identifier_type":"NCID"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_6501","resourcetype":"journal article"}]},"item_2_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1882-7764","subitem_source_identifier_type":"ISSN"}]},"item_2_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"BiCGStab(l)法は 非対称の大型疎行列を係数とする連立1次方程式を解く算法の1つである. これは BiCG法の残差ベクトルにl次のMR多項式 (最小残差多項式ともいう) を掛けることで残差ノルムの収束を加速させたものである. 一般に MR多項式の次数lの値が大きいと残差ノルムの収束は良くなるが 余分な計算時間を必要としてしまうのが難点である. 算法がブレイクダウン (破綻ともいう) しそうになったときに MR多項式の次数lを変化させる算法が Sleijpenらによって提案されているが 彼らの算法を従来のBiCGStab(l)法と比較すると 残差ノルムが収束するまでに余分な計算時間を必要とすることが多い. 本稿では ブレイクダウンが起こりそうなときと残差ノルムの収束が停滞したときの両方の場合に MR多項式の次数lを変化させる算法を提案する. 最後に この新しい算法を富士通の分散メモリ型並列計算機AP3000に実装し数値実験を行い その算法の有効性について 従来のBiCGStab(l)法と比較検討を行う.","subitem_description_type":"Other"}]},"item_2_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"BiCGStab(l) method is one of iterative methods to solve large and sparse nonsymmetric linear systems of equations. It stablizes the residual norm of BiCG (bi-conjugate gradient) method by adapting l degree MR (minimal residual) polynomial. When the degree of MR polynomial l becomes larger, the convergence of residual norm will be better. However, the computational cost will be increased. Sleijpen et al. proposed the BiCGStab(l) method with varying l in case of a breakdown. However, the BiCGStab(l) method based on their algorithm is often required more computational time than the conventional BiCGStab(l) method. In this paper, it is both of When the convergence of residual norm stagnates and the breakdown is likely to occur, the BiCGStab(l) method for varying l in adaption is proposed. At last, this algorithm is implemented on the distributed memory machine Fujitsu AP3000 and the numerical examples are given.","subitem_description_type":"Other"}]},"item_2_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"2678","bibliographic_titles":[{"bibliographic_title":"情報処理学会論文誌"}],"bibliographicPageStart":"2669","bibliographicIssueDates":{"bibliographicIssueDate":"1999-06-15","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"6","bibliographicVolumeNumber":"40"}]},"relation_version_is_last":true,"item_2_alternative_title_2":{"attribute_name":"その他タイトル","attribute_value_mlt":[{"subitem_alternative_title":"数値計算"}]},"weko_creator_id":"1"},"created":"2025-01-18T22:46:55.652144+00:00","id":12619,"links":{}}