{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00118244","sets":["6504:7974:7976"]},"path":["7976"],"owner":"1","recid":"118244","title":["Lobatto積分則による非線形積分方程式の数値解法について"],"pubdate":{"attribute_name":"公開日","attribute_value":"1990-03-14"},"_buckets":{"deposit":"5c5ae24f-a806-4332-b3f4-6bcb2aff15fb"},"_deposit":{"id":"118244","pid":{"type":"depid","value":"118244","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"Lobatto積分則による非線形積分方程式の数値解法について","author_link":[],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Lobatto積分則による非線形積分方程式の数値解法について"},{"subitem_title":"On Numerical Solution of Nonlinear Integral Equation based on Lobatto Quadrature","subitem_title_language":"en"}]},"item_type_id":"22","publish_date":"1990-03-14","item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_22_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"富士通(株) 国際情報社会科学研究所"}]},"item_22_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"International Institute of Advance Study of Social Information Science, FUJITSU LIMITED","subitem_text_language":"en"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/118244/files/KJ00001337857.pdf"},"date":[{"dateType":"Available","dateValue":"1990-03-14"}],"format":"application/pdf","filename":"KJ00001337857.pdf","filesize":[{"value":"168.5 kB"}],"mimetype":"application/pdf","accessrole":"open_date","version_id":"d28267f9-03e4-4e23-b3cb-9e0e7c37d501","displaytype":"detail","licensetype":"license_note"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_5794","resourcetype":"conference paper"}]},"item_22_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00349328","subitem_source_identifier_type":"NCID"}]},"item_22_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"非線形積分方程式であるHammerstein方程式(1.1)u(x)=∫^1_<-1>K(x,s)f(s,u(s))ds+h(x) (x∈I=[-1,1])に対してLobatto積分則を用いる古典的Nystrom法は(1.2)u_i=Σ^n__<j=1>K_<ij>W_jf_j+h_i(i=1,2,..,n)の離散近似方程式系を導く.ここでW_iはLobatto積分則の重み係数,x_jはその分点,u_iは方程式(1.1)の解u(x)のx_i上の近似値,K_<ij>=K(x_i,x_j),f_j=(x_j,u_j),h_i=h(x_i).しかし,積分核k(x,s)やf(s,z),h(x)が十分滑らかな場合,もう少し精密に離散化を図ると,つぎのような離散近似方程式系が得られる.(1.3)u_i=Σ^n__<j=1>K_<ij>w_jf_j+Σ^n__<j=1>Σ^n__<k=1>K_<ij>e_<jk>f_k+h_iここでe_<jk>は,p_<n-1>(x)をLegendre多項式とし,(1.4)e_<jk>=-2/((2n-1)n(n-1)p<n-1>(x_i)p_<n-1>(x_j))本予稿では,(1.3)の離散近似方程式系を導く近似スキムを提案し,古典的Nystrom法との精度的な比較を行う.また数値結果に基づく比較も行う.","subitem_description_type":"Other"}]},"item_22_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"83","bibliographic_titles":[{"bibliographic_title":"全国大会講演論文集"}],"bibliographicPageStart":"82","bibliographicIssueDates":{"bibliographicIssueDate":"1990-03-14","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"基礎理論及び基礎技術","bibliographicVolumeNumber":"第40回"}]},"relation_version_is_last":true,"weko_creator_id":"1"},"id":118244,"updated":"2025-01-21T05:02:00.535434+00:00","links":{},"created":"2025-01-18T23:59:04.154581+00:00"}