Item type |
Symposium(1) |
公開日 |
2014-10-15 |
タイトル |
|
|
タイトル |
3次元格子篩において用いられる格子点計算法の評価 |
タイトル |
|
|
言語 |
en |
|
タイトル |
A Verification of 3-Dimensional Lattice Sieve |
言語 |
|
|
言語 |
jpn |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
拡大体,離散対数問題,数体篩法,格子篩 |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_5794 |
|
資源タイプ |
conference paper |
著者所属 |
|
|
|
九州大学大学院数理学府 |
著者所属 |
|
|
|
NTTセキュアプラットフォーム研究所 |
著者所属 |
|
|
|
NTTセキュアプラットフォーム研究所 |
著者所属 |
|
|
|
九州大学 マス・フォア・インダストリ研究所 |
著者所属(英) |
|
|
|
en |
|
|
Graduate School of Mathematics Kyushu University |
著者所属(英) |
|
|
|
en |
|
|
NTT Secure Platform Laboratories |
著者所属(英) |
|
|
|
en |
|
|
NTT Secure Platform Laboratories |
著者所属(英) |
|
|
|
en |
|
|
Institute of Mathematics for Industry |
著者名 |
早坂, 健一郎
青木, 和麻呂
小林, 鉄太郎
高木, 剛
|
著者名(英) |
Kenichiro, Hayasaka
Kazumaro, Aoki
Tetsutaro, Kobayashi
Tsuyoshi, Takagi
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
拡大体GF(p^n)上の離散対数問題の困難性は,ペアリング暗号の安全性基盤の一つである.数体篩法は拡大体GF(p^n)上の離散対数問題に対する現在最速の解法であるが,3次元以上の領域における網羅的かつ効率的な格子点計算が課題であった.これに対して著者らはCSS2013において3次元の領域における格子点計算法を提案した.また,ある条件を満たす格子に対し,上記の3次元格子点計算法を用いると網羅的に格子点を計算できることを実験により確かめた.本稿では,ある条件を満たす格子に対して3次元格子点計算法を用いれば,領域内の全ての格子点を効率的に計算可能であることを示す. |
書誌情報 |
コンピュータセキュリティシンポジウム2014論文集
巻 2014,
号 2,
p. 135-142,
発行日 2014-10-15
|
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |