ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2014
  4. 2014-MPS-099

Accelerating the Numerical Computation of Positive Roots of Polynomials using Improved Bounds

https://ipsj.ixsq.nii.ac.jp/records/102166
https://ipsj.ixsq.nii.ac.jp/records/102166
5b5d3c8c-ee7b-4146-bd8e-e3f341075741
名前 / ファイル ライセンス アクション
IPSJ-MPS14099006.pdf IPSJ-MPS14099006.pdf (596.7 kB)
Copyright (c) 2014 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2014-07-14
タイトル
タイトル Accelerating the Numerical Computation of Positive Roots of Polynomials using Improved Bounds
タイトル
言語 en
タイトル Accelerating the Numerical Computation of Positive Roots of Polynomials using Improved Bounds
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Informatics, Kyoto University
著者所属
Graduate School of Informatics, Kyoto University
著者所属
Graduate School of Informatics, Kyoto University
著者所属
Academic Group of Information and Computer Sciences, Nara Women's University
著者所属
Graduate School of Informatics, Kyoto University
著者所属(英)
en
Graduate School of Informatics, Kyoto University
著者所属(英)
en
Graduate School of Informatics, Kyoto University
著者所属(英)
en
Graduate School of Informatics, Kyoto University
著者所属(英)
en
Academic Group of Information and Computer Sciences, Nara Women's University
著者所属(英)
en
Graduate School of Informatics, Kyoto University
著者名 Kinji, Kimura Takuto, Akiyama Hiroyuki, Ishigami Masami, Takata Yoshimasa, Nakamura

× Kinji, Kimura Takuto, Akiyama Hiroyuki, Ishigami Masami, Takata Yoshimasa, Nakamura

Kinji, Kimura
Takuto, Akiyama
Hiroyuki, Ishigami
Masami, Takata
Yoshimasa, Nakamura

Search repository
著者名(英) Kinji, Kimura Takuto, Akiyama Hiroyuki, Ishigami Masami, Takata Yoshimasa, Nakamura

× Kinji, Kimura Takuto, Akiyama Hiroyuki, Ishigami Masami, Takata Yoshimasa, Nakamura

en Kinji, Kimura
Takuto, Akiyama
Hiroyuki, Ishigami
Masami, Takata
Yoshimasa, Nakamura

Search repository
論文抄録
内容記述タイプ Other
内容記述 The continued fraction method for isolating the positive roots of a univariate polynomial equation is based on Vincent's theorem, which computes all of the real roots of polynomial equations. In this paper, we propose two new lower bounds which accelerate the fraction method. The two proposed bounds are derived from a theorem stated by Akritas et al., and use different pairing strategies for the coefficients of the target polynomial equations from the bounds proposed by Akritas et al. Numerical experiments show that the proposed lower bounds are more effective than existing bounds for some special polynomial equations and random polynomial equations, and are competitive with them for other special polynomial equations.
論文抄録(英)
内容記述タイプ Other
内容記述 The continued fraction method for isolating the positive roots of a univariate polynomial equation is based on Vincent's theorem, which computes all of the real roots of polynomial equations. In this paper, we propose two new lower bounds which accelerate the fraction method. The two proposed bounds are derived from a theorem stated by Akritas et al., and use different pairing strategies for the coefficients of the target polynomial equations from the bounds proposed by Akritas et al. Numerical experiments show that the proposed lower bounds are more effective than existing bounds for some special polynomial equations and random polynomial equations, and are competitive with them for other special polynomial equations.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2014-MPS-99, 号 6, p. 1-4, 発行日 2014-07-14
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 10:56:11.664574
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3