ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 知能システム(ICS)
  3. 2014
  4. 2014-ICS-176

Bayesian multiple and co-clustering methods: Application to fMRI data

https://ipsj.ixsq.nii.ac.jp/records/102150
https://ipsj.ixsq.nii.ac.jp/records/102150
ae770b80-a119-4c8b-9507-9d527fb59bf8
名前 / ファイル ライセンス アクション
IPSJ-ICS14176002.pdf IPSJ-ICS14176002.pdf (1.8 MB)
Copyright (c) 2014 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2014-07-15
タイトル
タイトル Bayesian multiple and co-clustering methods: Application to fMRI data
タイトル
言語 en
タイトル Bayesian multiple and co-clustering methods: Application to fMRI data
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Okinawa Institute of Science and Technology Graduate University
著者所属
Okinawa Institute of Science and Technology Graduate University
著者所属
Okinawa Institute of Science and Technology Graduate University
著者所属
Kyoto University/Okinawa Institute of Science and Technology Graduate University
著者所属
Hiroshima University
著者所属
Hiroshima University
著者所属
Hiroshima University
著者所属
Hiroshima University
著者所属
Otemon Gakuin University
著者所属
Hiroshima University
著者所属
Hiroshima University
著者所属
Tokyo University
著者所属
Okinawa Institute of Science and Technology Graduate University
著者所属(英)
en
Okinawa Institute of Science and Technology Graduate University
著者所属(英)
en
Okinawa Institute of Science and Technology Graduate University
著者所属(英)
en
Okinawa Institute of Science and Technology Graduate University
著者所属(英)
en
Kyoto University / Okinawa Institute of Science and Technology Graduate University
著者所属(英)
en
Hiroshima University
著者所属(英)
en
Hiroshima University
著者所属(英)
en
Hiroshima University
著者所属(英)
en
Hiroshima University
著者所属(英)
en
Otemon Gakuin University
著者所属(英)
en
Hiroshima University
著者所属(英)
en
Hiroshima University
著者所属(英)
en
Tokyo University
著者所属(英)
en
Okinawa Institute of Science and Technology Graduate University
著者名 Tomoki, Tokuda Junichiro, Yoshimoto Yu, Shimizu Kosuke, Yoshida Shigeru, Toki Go, Okada Masahiro, Takamura Tetsuya, Yamamoto Shinpei, Yoshimura Yasumasa, Okamoto Shigeto, Yamawaki Noriaki, Yahata Kenji, Doya

× Tomoki, Tokuda Junichiro, Yoshimoto Yu, Shimizu Kosuke, Yoshida Shigeru, Toki Go, Okada Masahiro, Takamura Tetsuya, Yamamoto Shinpei, Yoshimura Yasumasa, Okamoto Shigeto, Yamawaki Noriaki, Yahata Kenji, Doya

Tomoki, Tokuda
Junichiro, Yoshimoto
Yu, Shimizu
Kosuke, Yoshida
Shigeru, Toki
Go, Okada
Masahiro, Takamura
Tetsuya, Yamamoto
Shinpei, Yoshimura
Yasumasa, Okamoto
Shigeto, Yamawaki
Noriaki, Yahata
Kenji, Doya

Search repository
著者名(英) Tomoki, Tokuda Junichiro, Yoshimoto Yu, Shimizu Kosuke, Yoshida Shigeru, Toki Go, Okada Masahiro, Takamura Tetsuya, Yamamoto Shinpei, Yoshimura Yasumasa, Okamoto Shigeto, Yamawaki Noriaki, Yahata Kenji, Doya

× Tomoki, Tokuda Junichiro, Yoshimoto Yu, Shimizu Kosuke, Yoshida Shigeru, Toki Go, Okada Masahiro, Takamura Tetsuya, Yamamoto Shinpei, Yoshimura Yasumasa, Okamoto Shigeto, Yamawaki Noriaki, Yahata Kenji, Doya

en Tomoki, Tokuda
Junichiro, Yoshimoto
Yu, Shimizu
Kosuke, Yoshida
Shigeru, Toki
Go, Okada
Masahiro, Takamura
Tetsuya, Yamamoto
Shinpei, Yoshimura
Yasumasa, Okamoto
Shigeto, Yamawaki
Noriaki, Yahata
Kenji, Doya

Search repository
論文抄録
内容記述タイプ Other
内容記述 We propose a novel approach for the dimension reduction of high dimensional data to make the data available for conventional statistical evaluations. Our method is based on nonparametric multiple Gaussian clustering, in which we assume that in each cluster block, the instances follow an independent and identically (i.i.d.) univariate Gaussian distribution. We show theoretically that our model can fit multivariate Gaussian distributions with exchangeable features. We further show how the clusters derived with this specific model can be used to effectively reduce the dimension of data taking into account associations between attributes. Finally, we demonstrate our approach in an application to resting state functional magnetic resonance imaging (fMRI) data, which implies subtypes of depression may be characterized by the treatment effect of antidepressant drug SSRI.
論文抄録(英)
内容記述タイプ Other
内容記述 We propose a novel approach for the dimension reduction of high dimensional data to make the data available for conventional statistical evaluations. Our method is based on nonparametric multiple Gaussian clustering, in which we assume that in each cluster block, the instances follow an independent and identically (i.i.d.) univariate Gaussian distribution. We show theoretically that our model can fit multivariate Gaussian distributions with exchangeable features. We further show how the clusters derived with this specific model can be used to effectively reduce the dimension of data taking into account associations between attributes. Finally, we demonstrate our approach in an application to resting state functional magnetic resonance imaging (fMRI) data, which implies subtypes of depression may be characterized by the treatment effect of antidepressant drug SSRI.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11135936
書誌情報 研究報告知能システム(ICS)

巻 2014-ICS-176, 号 2, p. 1-5, 発行日 2014-07-15
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 10:56:26.376316
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3