ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.55
  3. No.6

Algorithms and Techniques for Proactive Search

https://ipsj.ixsq.nii.ac.jp/records/101725
https://ipsj.ixsq.nii.ac.jp/records/101725
e5481dcb-7486-477a-864a-a8873485240c
名前 / ファイル ライセンス アクション
IPSJ-JNL5506003.pdf IPSJ-JNL5506003 (222.7 kB)
Copyright (c) 2014 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2014-06-15
タイトル
タイトル Algorithms and Techniques for Proactive Search
タイトル
言語 en
タイトル Algorithms and Techniques for Proactive Search
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:Applications and the Internet in Conjunction with Main Topics of COMPSAC 2013] proactive search, neighborhoods of similarity, recommendation algorithms
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Missouri University of Science and Technology
著者所属
Missouri University of Science and Technology
著者所属
Missouri University of Science and Technology
著者所属(英)
en
Missouri University of Science and Technology
著者所属(英)
en
Missouri University of Science and Technology
著者所属(英)
en
Missouri University of Science and Technology
著者名 C.ShaunWagner

× C.ShaunWagner

C.ShaunWagner

Search repository
SahraSedighSarvestani

× SahraSedighSarvestani

SahraSedighSarvestani

Search repository
AliR.Hurson

× AliR.Hurson

AliR.Hurson

Search repository
著者名(英) C., ShaunWagner

× C., ShaunWagner

en C., ShaunWagner

Search repository
Sahra, SedighSarvestani

× Sahra, SedighSarvestani

en Sahra, SedighSarvestani

Search repository
Ali, R.Hurson

× Ali, R.Hurson

en Ali, R.Hurson

Search repository
論文抄録
内容記述タイプ Other
内容記述 While search engines have demonstrated improvements in both speed and accuracy, their response time is prohibitively long for applications that require immediate and accurate responses to search queries. Examples include identification of multimedia resources related to the subject matter of a particular class, as it is in session. This paper begins with a survey of collaborative recommendation and prediction algorithms, each of which applies a different method to predict future search engine usage based on the past history of a search engine user. To address the shortcomings identified in existing techniques, we propose a proactive search approach that identifies resources likely to be of interest to the user without requiring a query. The approach is contingent on accurate determination of similarity, which we achieve with local alignment and output-based refinement of similarity neighborhoods. We demonstrate our proposed approach with trials on real-world search engine data. The results support our hypothesis that a majority of users exhibit search engine usage behavior that is predictable, allowing a proactive search engine to bypass the common query-response model and immediately deliver a list of resources of interest to the user.

------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.22(2014) No.3 (online)
DOI http://dx.doi.org/10.2197/ipsjjip.22.425
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 While search engines have demonstrated improvements in both speed and accuracy, their response time is prohibitively long for applications that require immediate and accurate responses to search queries. Examples include identification of multimedia resources related to the subject matter of a particular class, as it is in session. This paper begins with a survey of collaborative recommendation and prediction algorithms, each of which applies a different method to predict future search engine usage based on the past history of a search engine user. To address the shortcomings identified in existing techniques, we propose a proactive search approach that identifies resources likely to be of interest to the user without requiring a query. The approach is contingent on accurate determination of similarity, which we achieve with local alignment and output-based refinement of similarity neighborhoods. We demonstrate our proposed approach with trials on real-world search engine data. The results support our hypothesis that a majority of users exhibit search engine usage behavior that is predictable, allowing a proactive search engine to bypass the common query-response model and immediately deliver a list of resources of interest to the user.

------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.22(2014) No.3 (online)
DOI http://dx.doi.org/10.2197/ipsjjip.22.425
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 55, 号 6, 発行日 2014-06-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 06:45:53.462201
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3