ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.55
  3. No.4

Music Recommender Adapting Implicit Context Using ‘renso’ Relation among Linked Data

https://ipsj.ixsq.nii.ac.jp/records/100831
https://ipsj.ixsq.nii.ac.jp/records/100831
ae9343fe-696b-4bf2-a2e6-6a691131b61d
名前 / ファイル ライセンス アクション
IPSJ-JNL5504014.pdf IPSJ-JNL5504014 (2.8 MB)
Copyright (c) 2014 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2014-04-15
タイトル
タイトル Music Recommender Adapting Implicit Context Using ‘renso’ Relation among Linked Data
タイトル
言語 en
タイトル Music Recommender Adapting Implicit Context Using ‘renso’ Relation among Linked Data
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:Multiagent-based Societal Systems] context awareness, music recommendation, Linked Data
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
University of Electro-Communications
著者所属
University of Electro-Communications/Toshiba Corporation
著者所属
University of Electro-Communications
著者所属
University of Electro-Communications
著者所属
University of Electro-Communications
著者所属
University of Electro-Communications
著者所属(英)
en
University of Electro-Communications
著者所属(英)
en
University of Electro-Communications / Toshiba Corporation
著者所属(英)
en
University of Electro-Communications
著者所属(英)
en
University of Electro-Communications
著者所属(英)
en
University of Electro-Communications
著者所属(英)
en
University of Electro-Communications
著者名 Mian, Wang

× Mian, Wang

Mian, Wang

Search repository
Takahiro, Kawamura

× Takahiro, Kawamura

Takahiro, Kawamura

Search repository
Yuichi, Sei

× Yuichi, Sei

Yuichi, Sei

Search repository
Hiroyuki, Nakagawa

× Hiroyuki, Nakagawa

Hiroyuki, Nakagawa

Search repository
Yasuyuki, Tahara

× Yasuyuki, Tahara

Yasuyuki, Tahara

Search repository
Akihiko, Ohsuga

× Akihiko, Ohsuga

Akihiko, Ohsuga

Search repository
著者名(英) Mian, Wang

× Mian, Wang

en Mian, Wang

Search repository
Takahiro, Kawamura

× Takahiro, Kawamura

en Takahiro, Kawamura

Search repository
Yuichi, Sei

× Yuichi, Sei

en Yuichi, Sei

Search repository
Hiroyuki, Nakagawa

× Hiroyuki, Nakagawa

en Hiroyuki, Nakagawa

Search repository
Yasuyuki, Tahara

× Yasuyuki, Tahara

en Yasuyuki, Tahara

Search repository
Akihiko, Ohsuga

× Akihiko, Ohsuga

en Akihiko, Ohsuga

Search repository
論文抄録
内容記述タイプ Other
内容記述 The existing music recommendation systems rely on user's contexts or content analysis to satisfy the users' music playing needs. They achieved a certain degree of success and inspired future researches to get more progress. However, a cold start problem and the limitation to the similar music have been pointed out. Therefore, this paper proposes a unique recommendation methodusing a ‘renso’ alignment among Linked Data, aiming to realize the music recommendation agent in smartphone. We first collect data from Last.fm, Yahoo! Local, Twitter and LyricWiki, and create a large scale of Linked Open Data (LOD), then create the ‘renso’ relation on the LOD and select the music according to the context. Finally, we confirmed an evaluation result demonstrating its accuracy and serendipity.

------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.22(2014) No.2 (online)
DOI http://dx.doi.org/10.2197/ipsjjip.22.279
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 The existing music recommendation systems rely on user's contexts or content analysis to satisfy the users' music playing needs. They achieved a certain degree of success and inspired future researches to get more progress. However, a cold start problem and the limitation to the similar music have been pointed out. Therefore, this paper proposes a unique recommendation methodusing a ‘renso’ alignment among Linked Data, aiming to realize the music recommendation agent in smartphone. We first collect data from Last.fm, Yahoo! Local, Twitter and LyricWiki, and create a large scale of Linked Open Data (LOD), then create the ‘renso’ relation on the LOD and select the music according to the context. Finally, we confirmed an evaluation result demonstrating its accuracy and serendipity.

------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.22(2014) No.2 (online)
DOI http://dx.doi.org/10.2197/ipsjjip.22.279
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 55, 号 4, 発行日 2014-04-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 06:46:25.598922
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3