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Polynomial-Time Algorithms for Subgraph
Isomorphism in Small Graph Classes of Perfect

Graphs∗
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Abstract: Given two graphs, Subgraph Isomorphism is the problem of deciding whether the first graph
(the base graph) contains a subgraph isomorphic to the second graph (the pattern graph). This problem is
NP-complete for very restricted graph classes such as connected proper interval graphs. Only a few cases
are known to be polynomial-time solvable even if we restrict the graphs to be perfect. For example, if both
graphs are co-chain graphs, then the problem can be solved in linear time.
In this paper, we present a polynomial-time algorithm for the case where the base graphs are chordal graphs
and the pattern graphs are co-chain graphs. We also present a linear-time algorithm for the case where the
base graphs are trivially perfect graphs and the pattern graphs are threshold graphs. These results answer
some of the open questions of Kijima et al. [Discrete Math. 312, pp. 3164–3173, 2012]. To present a complex-
ity contrast, we then show that even if the base graphs are somewhat restricted perfect graphs, the problem
of finding a pattern graph that is a chain graph, a co-chain graph, or a threshold graph is NP-complete.

1. Introduction

The problem Subgraph Isomorphism is a very general

and extremely hard problem which asks, given two graphs,

whether one graph (the base graph) contains a subgraph

isomorphic to the other graph (the pattern graph). The

problem generalizes many other problems such as Graph

Isomorphism, Hamiltonian Path, Clique, and Band-

width. Clearly, Subgraph Isomorphism is NP-complete

in general. Furthermore, by slightly modifying known proofs

[5], [8], it can be shown that Subgraph Isomorphism is

NP-complete when G and H are disjoint unions of paths or

of complete graphs. Therefore, it is NP-complete even for

small graph classes of perfect graphs such as proper interval

graphs, bipartite permutation graphs, and trivially perfect

graphs, while Graph Isomorphism can be solved in poly-

nomial time for them [4], [18]. For these graph classes, Ki-

jima et al. [16] showed that even if both input graphs are

connected and have the same number of vertices, the prob-

lem remains NP-complete. They call the problem with such

restrictions Spanning Subgraph Isomorphism.

Kijima et al. [16] also found polynomial-time solvable

cases of Subgraph Isomorphism in which both graphs are

∗Partially supported by JSPS KAKENHI Grant Numbers
23500013, 25730003, and by MEXT KAKENHI Grant Number
24106004.
1 School of Information Science, Japan Advanced Institute of

Science and Technology
a) matsu.cona@jaist.ac.jp
b) otachi@jaist.ac.jp
c) uehara@jaist.ac.jp

chain, co-chain, or threshold graphs. Since these classes are

proper subclasses of the aforementioned hard classes, those

results together give sharp contrasts of computational com-

plexity of Subgraph Isomorphism. However, the com-

plexity of more subtle cases, like the one where the base

graphs are proper interval graphs and the pattern graphs

are co-chain graphs, remained open.

1.1 Our results

In this paper, we study the open cases of Kijima et al. [16],

and present polynomial-time algorithms for the following

cases:

• the base graphs are chordal graphs and the pattern

graphs are co-chain graphs,

• the base graphs are trivially perfect graphs and the pat-

tern graphs are threshold graphs.

We also show that even if the pattern graphs are chain, co-

chain, or threshold graphs and the base graphs are somewhat

restricted perfect graphs, the problem remains NP-complete.

The problem of finding a chain subgraph in a bipartite per-

mutation graph, which is an open case of Kijima et al. [16],

remains unsettled. See Tables 1 and 2 for the summary of

our results.

1.2 Related results

Subgraph Isomorphism for trees can be solved in poly-

nomial time [22], while it is NP-complete for connected

outerplanar graphs [26]. Therefore, the problem is NP-

complete even for connected graphs of bounded treewidth.
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Table 1 NP-complete cases of Spanning Subgraph Isomor-
phism.

Base Pattern Complexity Reference

Bipartite Permutation NP-complete [16]
Proper Interval NP-complete [16]
Trivially Perfect NP-complete [16]

Chain Convex NP-complete [16]
Co-chain Co-bipartite NP-complete [16]
Threshold Split NP-complete [16]
Bipartite Chain NP-complete This paper

Co-convex Co-chain NP-complete This paper
Split Threshold NP-complete This paper

Table 2 Polynomial-time solvable cases of Subgraph Isomor-
phism.

Base Pattern Complexity Reference

Chain O(m + n) [16]
Co-chain O(m + n) [16]
Threshold O(m + n) [16]

Bipartite permutation Chain Open
Chordal Co-chain O(mn2 + n3) This paper

Trivially perfect Threshold O(m + n) This paper

On the other hand, it can be solved in polynomial time

for 2-connected outerplanar graphs [17]. More generally,

it is known that Subgraph Isomorphism for k-connected

partial k-trees can be solved in polynomial time [11], [21].

Eppstein [7] gave a kO(k)n-time algorithm for Subgraph

Isomorphism on planar graphs, where k and n are the num-

bers of the vertices in the pattern graph and the base graph,

respectively. Recently, Dorn [6] has improved the running

time to 2O(k)n. For other general frameworks, especially for

the parameterized ones, see the recent paper by Marx and

Pilipczuk [19] and the references therein.

Another related problem is Induced Subgraph Iso-

morphism which asks whether the base graph has an in-

duced subgraph isomorphic to the pattern graph. Dam-

aschke [5] showed that Induced Subgraph Isomorphism

on cographs is NP-complete. He also showed that Induced

Subgraph Isomorphism is NP-complete for the disjoint

unions of paths, and thus for proper interval graphs and bi-

partite permutation graphs. Marx and Schlotter [20] showed

that Induced Subgraph Isomorphism on interval graphs

is W[1]-hard when parameterized by the number of vertices

in the pattern graph, but fixed-parameter tractable when

parameterized by the numbers of vertices to be removed

from the base graph. Heggernes et al. [14] showed that In-

duced Subgraph Isomorphism on proper interval graphs

is NP-complete even if the base graph is connected. Heg-

gernes et al. [15] have recently shown that Induced Sub-

graph Isomorphism on proper interval graphs and bipar-

tite permutation graphs can be solved in polynomial time if

the pattern graph is connected. Belmonte et al. [1] showed

that Induced Subgraph Isomorphism on connected triv-

ially perfect graphs is NP-complete. This result strengthens

known results since every trivially perfect graph is an in-

terval cograph. They also showed that the problem can be

solved in polynomial time if the base graphs are trivially

perfect graphs and the pattern graphs are threshold graphs.

2. Preliminaries

All graphs in this paper are finite, undirected, and sim-

ple. Let G[U ] denote the subgraph of G = (V,E) in-

duced by U ⊆ V . For a vertex v ∈ V , we denote by

G − v the graph obtained by removing v from G; that is,

G− v = G[V \ {v}]. The neighborhood of a vertex v is the

set N(v) = {u ∈ V | {u, v} ∈ E}. A vertex v ∈ V is uni-

versal in G if N(v) = V \ {v}. A vertex v ∈ V is isolated

in G if N(v) = ∅. A set I ⊆ V in G = (V,E) is an inde-

pendent set if for all u, v ∈ I, (u, v) /∈ E. A set S ⊆ V in

G = (V,E) is a clique if for all u, v ∈ S, (u, v) ∈ E. A pair

(X,Y ) of sets of vertices of a bipartite graph H = (U, V ;E)

is a biclique if for all x ∈ X and y ∈ Y , (x, y) ∈ E. A

component of a graph G is an inclusion maximal connected

subgraph of G. A component is non-trivial if it contains at

least two vertices. The complement of a graph G = (V,E)

is the graph Ḡ = (V, Ē) such that {u, v} ∈ Ē if and only if

{u, v} /∈ E. The disjoint union of two graphsG = (VG, EG)

and H = (VH , EH) is the graph (VG∪VH , EG∪EH), where

VG ∩ VH = ∅. For a map η : V → V ′ and S ⊆ V , let η(S)

denote the set {η(s) | s ∈ S}.

2.1 Definitions of the problems

A graph H = (VH , EH) is subgraph-isomorphic to a

graph G = (VG, EG) if there exists an injective map η

from VH to VG such that {η(u), η(v)} ∈ EG holds for each

{u, v} ∈ EH . We call such a map η a subgraph-isomorphism

fromH toG. GraphsG andH are called the base graph and

the pattern graph, respectively. The problems Subgraph

Isomorphism and Spanning Subgraph Isomorphism are

defined as follows:

Problem 2.1 Subgraph Isomorphism

Instance: A pair of graphs G = (VG, EG) and H =

(VH , EH).

Question: Is H subgraph-isomorphic to G?

Problem 2.2 Spanning Subgraph Isomorphism

Instance: A pair of connected graphs G = (VG, EG) and

H = (VH , EH), where |VG| = |VH |.
Question: Is H subgraph-isomorphic to G?

2.2 Graph classes

Here we introduce the graph classes we deal with in this

paper. For their inclusion relations, see the standard text-

books in this field [3], [9], [25]. See Fig. 1 for the class

hierarchy.

A bipartite graph B = (X,Y ;E) is a chain graph if the

vertices of X can be ordered as x1, x2, . . . , x|X| such that

N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(x|X|). A graph G = (V,E)

with V = {1, 2, . . . , n} is a permutation graph if there is

a permutation π over V such that {i, j} ∈ E if and only

if (i − j)(π(i) − π(j)) < 0. A bipartite permutation graph

is a permutation graph that is bipartite. A bipartite graph

H = (X,Y ;E) is a convex graph if one of X and Y can

be ordered such that the neighborhood of each vertex in the
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Fig. 1 Graph classes.

other side is consecutive in the ordering. It is known that

a chain graph is a bipartite permutation graph, and that a

bipartite permutation graph is a convex graph.

A graph is a co-chain graph if it is the complement of a

chain graph. An interval graph is the intersection graph of

a family of closed intervals of the real line. A proper interval

graph is the intersection graph of a family of closed intervals

of the real line where no interval is properly contained in an-

other. A graph is co-bipartite if its complement is bipartite.

In other words, co-bipartite graphs are exactly the graphs

whose vertex sets can be partitioned into two cliques. From

the definition, every co-chain graph is co-bipartite. It is

known that every co-chain graph is a proper interval graph.

A graph is a threshold graph if there is a positive integer

T (the threshold) and for every vertex v there is a posi-

tive integer w(v) such that {u, v} is an edge if and only if

w(u) + w(v) ≥ T . A graph is trivially perfect if the size

of the maximum independent set is equal to the number of

maximal cliques for every induced subgraph. It is known

that a threshold graph is a trivially perfect graph, and that

a trivially perfect graph is an interval graph.

A split graph is a graph whose vertex set can be parti-

tioned into a clique and an independent set. A graph is

chordal if every induced cycle is of length 3. Clearly, ev-

ery threshold graph is a split graph, and every split graph

is a chordal graph. It is known that every interval graph

is a chordal graph. It is easy to see that any split graph

(and thus any threshold graph) has at most one non-trivial

component.

A graph is perfect if for any induced subgraph the chro-

matic number is equal to the size of a maximum clique.

Graphs in all classes introduced in this section are known to

be perfect.

3. Polynomial-Time Algorithms

In this section, we denote the number of the vertices and

the edges in a base graph by n and m, respectively. For the

input graphs G and H, we assume that |VG| ≥ |VH | and
|EG| ≥ |EH |, which can be checked in time O(m+ n).

3.1 Finding co-chain subgraphs in chordal graphs

It is known that co-chain graphs are precisely

{I3, C4, C5}-free graphs [13]; that is, graphs having

no vertex subset that induces I3, C4, or C5, where I3 is

the empty graph with three vertices and Ck is the cycle of

k vertices. Using this characterization, we can show the

following simple lemma.

Lemma 3.1 A graph is a co-chain graph if and only if

it is a co-bipartite chordal graph.

Proof. To prove the if-part, let G be a co-bipartite chordal

graph. Since G is co-bipartite, it cannot have I3 as its in-

duced subgraph. Since G is chordal, it does not have C4 or

C5 as its induced subgraph. Therefore, G is {I3, C4, C5}-
free.

To prove the only-if-part, let G be a co-chain graph, and

thus it is a co-bipartite graph. Suppose that G has an in-

duced cycle C of length k ≥ 4. Then k cannot be 4 or 5

since it does not have C4 or C5. If k ≥ 6, then the first,

third, and fifth vertices in the cycle form I3.

Now we can solve the problem as follows.

Theorem 3.2 Subgraph Isomorphism is solvable in

O(mn2+n3) time if the base graphs are chordal graphs and

the pattern graphs are co-chain graphs.

Proof. Let G = (VG, EG) be the base chordal graph and

H = (VH , EH) be the pattern co-chain graph. We assume

that G is not complete, since otherwise the problem is triv-

ial.

Algorithm: We enumerate all the maximal cliques

C1, . . . , Ck of G. For each pair (Ci, Cj), we check whether

H is subgraph-isomorphic to G[Ci ∪Cj ]. If H is subgraph-

isomorphic to G[Ci ∪ Cj ] for some i and j, then we output

“yes.” Otherwise, we output “no.”

Correctness: It suffices to show that H is subgraph-

isomorphic to G if and only if there are two maximal cliques

Ci and Cj of G such that H is subgraph-isomorphic to

G[Ci ∪ Cj ]. The if-part is obviously true. To prove the

only-if-part, assume that there is a subgraph-isomorphism η

from H to G. Observe that for any clique C of H, there is a

maximal clique C′ of G such that η(C) ⊆ C′. Thus, since H

is co-bipartite, there are two maximal cliques Ci and Cj such

that η(VH) ⊆ Ci ∪ Cj . That is, H is subgraph-isomorphic

to G[Ci ∪ Cj ].

Running time: It is known that a chordal graph of n ver-

tices with m edges has at most n maximal cliques, and all

the maximal cliques can be found in O(m+n) time [2], [12].

Since G[Ci ∪Cj ] is a co-chain graph by Lemma 3.1, testing

whetherH is subgraph-isomorphic toG[Ci∪Cj ] can be done

in O(m+n) time [16]. Since the number of pairs of maximal

cliques is O(n2), the total running time is O(mn2 + n3).

3.2 Finding threshold subgraphs in trivially per-

fect graphs

Here we present a linear-time algorithm for finding a

threshold subgraph in a trivially perfect graph. To this end,

we need the following lemmas.
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Lemma 3.3 If a graphG has a universal vertex uG, and

a graph H has a universal vertex uH , then H is subgraph-

isomorphic toG if and only ifH−uH is subgraph-isomorphic

to G− uG.

Proof. To prove the if-part, let η′ be a subgraph-

isomorphism from H − uH to G − uG. Now we define

η : VH → VG as follows:

η(w) =

{
uG if w = uH ,

η′(w) otherwise.

Let {x, y} ∈ EH . If uH /∈ {x, y}, then {η(x), η(y)} =

{η′(x), η′(y)} ∈ EG. Otherwise, we may assume that

x = uH without loss of generality. Since uG is univer-

sal in G, it follows that {η(x), η(y)} = {η(uH), η(y)} =

{uG, η′(y)} ∈ EG.

To prove the only-if-part, assume that η′ is a subgraph-

isomorphism from H to G. If there is no vertex v ∈ VH

such that η′(v) = uG, then we are done. Assume that

η′(v) = uG for some vertex v ∈ VH . Now we define

η : VH \ {uH} → VG \ {uG} as follows:

η(w) =

{
η′(uH) if w = v,

η′(w) otherwise.

Let {x, y} ∈ EH . If v /∈ {x, y}, then {η(x), η(y)} =

{η′(x), η′(y)} ∈ EG. Otherwise, we may assume without

loss of generality that v = x. Since uH is universal in H, it

follows that {η(x), η(y)} = {η′(uH), η′(y)} ∈ EG.

A component of a graph is maximum if it contains the

maximum number of vertices among all the components of

the graph. If a split graph has a non-trivial component,

then the component is the unique maximum component of

the graph.

Lemma 3.4 A split graph H with a maximum compo-

nent CH is subgraph-isomorphic to a graph G if and only if

|VH | ≤ |VG| and there is a component CG of G such that

CH is subgraph-isomorphic to CG.

Proof. First we prove the only-if-part. Let η be a subgraph-

isomorphism from H to G. We need |VH | ≤ |VG| to have

an injective map from VH to VG. Since CH is connected,

G[η(V (CH))] must be connected. Thus there is a compo-

nent CG such that η(V (CH)) ⊆ V (CG). Then η|V (CH), the

map η restricted to V (CH), is a subgraph isomorphism from

CH to CG.

To prove the if-part, let η′ be a subgraph-isomorphism

from CH to CG. Let RH = VH \ V (CH) = {u1, . . . , ur},
and let RG = VG \ η′(V (CH)) = {w1, . . . , ws}. Since

|VH | ≤ |VG| and |V (CH)| = |η′(V (CH))|, it holds that

r ≤ s. Now we define η : VH → VG as follows:

η(v) =

{
wi if v = ui ∈ RH ,

η′(v) otherwise.

Since H is a split graph, any component of H other than

CH cannot have two or more vertices. Thus the vertices in

RH are isolated in H. Therefore, the map η is a subgraph-

isomorphism from H to G.

The two lemmas above already allows us to have a

polynomial-time algorithm. However, to achieve a linear

running time, we need the following characterization of triv-

ially perfect graphs.

A rooted tree is a directed tree with a unique in-degree

0 vertex, called the root. Intuitively, every edge is directed

from the root to leaves in a directed tree. A rooted forest is

the disjoint union of rooted trees. The comparability graph

of a rooted forest is the graph that has the same vertex set

as the rooted forest, and two vertices are adjacent in the

graph if and only if one of the two is a descendant of the

other in the forest. Yan et al. [28] showed that a graph is a

trivially perfect graph if and only if it is the comparability

graph of a rooted forest, and that such a rooted forest can be

computed in linear time. We call such a rooted forest a gen-

erating forest of the trivially perfect graph. If a generating

forest is actually a rooted tree, then we call it a generating

tree.

Theorem 3.5 Subgraph Isomorphism is solvable in

O(m+n) time if the base graphs are trivially perfect graphs

and the pattern graphs are threshold graphs.

Proof. Let G = (VG, EG) be the base trivially perfect

graph and H = (VH , EH) be the pattern threshold graph.

Algorithm: The pseudocode of our algorithm can be found

in Algorithm 1. We use the procedure SGI which takes

a trivially perfect graph as the base graph and a thresh-

old graph as the pattern graph, and conditionally answers

whether the pattern graph is subgraph-isomorphic to the

base graph. The procedure SGI requires that

• both the graphs are connected, and

• the base graph has at least as many vertices as the pat-

tern graph.

To use this procedure, we first attach a universal vertex to

both G and H. This guarantees that both graphs are con-

nected. We call the new graphs G′ and H ′, respectively.

By Lemma 3.3, (G′, H ′) is a yes-instance if and only if so

is (G,H). After checking that |VG′ | ≥ |VH′ |, we use the

procedure SGI.

In SGI(G,H), let uG and uH be universal vertices of G

and H, respectively. There are such vertices since G and

H are connected trivially perfect graphs [27]. Let CH be a

maximum component of H − uH . For each connected com-

ponent CG of G − uG, we check whether CH is subgraph-

isomorphic to CG, by recursively calling the procedure SGI

itself. If at least one of the recursive calls returns “yes,”

then we return “yes.” Otherwise we return “no.”

Correctness: It suffices to prove the correctness of the pro-

cedure SGI. If |VH | = 1, then H is subgraph-isomorphic to

G since |VG| ≥ |VH | in SGI. By Lemmas 3.3 and 3.4, H is

subgraph-isomorphic to G if and only if there is a compo-

nent CG of G−uG such that CH is subgraph-isomorphic to

CG. (Recall that any threshold graph is a split graph.) The

procedure just checks these conditions. Also, when SGI
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Algorithm 1 Finding a threshold subgraph H in a trivially

perfect graph G.

1: G′ := G with a universal vertex

2: H′ := H with a universal vertex

3: if |VG′ | ≥ |VH′ | then
4: return SGI(G′, H′)

5: else

6: return no

Require: G and H are connected, and |VG| ≥ |VH |
7: procedure SGI(G, H)

8: if |VH | = 1 then

9: return yes

10: uG := a universal vertex of G

11: uH := a universal vertex of H

12: CH := a maximum component of H − uH

13: for all components CG of G− uG do

14: if |V (CG)| ≥ |V (H − uH)| then
15: if SGI(CG, CH) = yes then

16: return yes

17: return no

recursively calls itself, the parameters CG and CH satisfy

its requirements; that is, CG and CH are connected, and

|V (CG)| ≥ |V (CG)|.
Running time: For each call of SGI(G,H), we need the fol-

lowing:

• universal vertices uG and uH of G and H, respectively,

• a maximum component CH of H − uH ,

• the components CG of G− uG, and

• the numbers of the vertices of CG and H − uH .

We show that they can be computed efficiently by using

generating forests. Basically we apply the algorithm to gen-

erating forests instead of graphs.

Before the very first call of SGI(G,H), we compute gen-

erating trees of G and H in linear time. Additionally, for

each node in the generating trees, we store the number of

its descendants. This can be done also in linear time in a

bottom-up fashion.

At some call of SGI(G,H), assume that we have gener-

ating trees of G and H. It is easy to see that the root of

the generating trees are universal vertices. Hence we can

compute uG and uH in constant time. By removing these

root nodes from the generating trees, we obtain generating

forests of G − uG and H − uH . Each component of the

generating forests corresponds to a component of the corre-

sponding graphs. Thus we can compute the components of

G− uG and a maximum component of H − uH , with their

generating trees, in time proportional to the number of the

children of uG and uH . The numbers of the vertices of CG

and H − uH can be computed easily in constant time, be-

cause we know the number of the descendants of each node

in generating trees.

The recursive calls of SGI take only O(n) time in total

since it is proportional to the number of edges in the gener-

ating trees. Therefore, the total running time is O(m+ n).

4. NP-completeness

It is known that for perfect graphs, Clique can be solved

in polynomial time [10]. Since co-chain graphs and thresh-

old graphs are very close to complete graphs, one may ask

whether the problem of finding co-chain graphs or threshold

graphs can be solved in polynomial time for perfect graphs.

In this section, we show that this is not the case. More pre-

cisely, we show that even the specialized problem Spanning

Subgraph Isomorphism is NP-complete for the case where

the base graphs are somewhat restricted perfect graphs and

the pattern graphs are co-chain or threshold graphs.

It is known that Maximum Edge Biclique, the prob-

lem of finding a biclique with the maximum number of edges,

is NP-complete for bipartite graphs [24]. This implies that

Subgraph Isomorphism is NP-complete if the base graphs

are connected bipartite graphs and the pattern graphs are

connected chain graphs, because complete bipartite graphs

are chain graphs. We sharpen this hardness result by show-

ing that the problem is still NP-complete if we further re-

strict the pattern chain graphs to have the same number of

vertices as the base graph. That is, we show that Span-

ning Subgraph Isomorphism is NP-complete when the

base graphs are bipartite graphs and the pattern graphs are

chain graphs.

Since the problem Spanning Subgraph Isomorphism

is clearly in NP for any graph class, we only show its NP-

hardness here. All the results in this section are based on the

following theorem and lemma taken from Kijima et al. [16].

Theorem 4.1 (Kijima et al. [16]) Spanning Sub-

graph Isomorphism is NP-complete if

( 1 ) the base graphs are chain graphs and the pattern graphs

are convex graphs,

( 2 ) the base graphs are co-chain graphs and the pattern

graphs are co-bipartite graphs, or

( 3 ) the base graphs are threshold graphs and the pattern

graphs are split graphs.

Lemma 4.2 (Kijima et al. [16]) If |VH | = |VG|,
then H is subgraph-isomorphic to G if and only if Ḡ is

subgraph-isomorphic to H̄.

For a graph class C, let co-C denote the graph class

{Ḡ | G ∈ C}. The next lemma basically shows that if C
satisfies some property, then the hardness of Spanning Sub-

graph Isomorphism for C implies the hardness for co-C.
Lemma 4.3 Let C and D be graph classes such that

co-C and co-D are closed under universal vertex additions. If

Spanning Subgraph Isomorphism is NP-complete when

the base graphs belong to C and the pattern graphs belong

to D, then the problem is NP-complete also when the base

graphs belong to co-D and the pattern graphs belong to

co-C.

Proof. Given two connected graphs G ∈ C and H ∈ D
with |VG| = |VH |, it is NP-complete to decide whether H is

subgraph-isomorphic to G. By Lemma 4.2, H is subgraph-

isomorphic to G if and only if Ḡ is subgraph-isomorphic

5ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-147 No.12
2014/3/4



IPSJ SIG Technical Report

to H̄. By Lemma 3.3, Ḡ is subgraph-isomorphic to H̄ if

and only if Ḡ′ is subgraph-isomorphic to H̄ ′, where Ḡ′ and

H̄ ′ are obtained from Ḡ and H̄, respectively, by adding a

universal vertex. Therefore, H is subgraph-isomorphic to

G if and only if Ḡ′ is subgraph-isomorphic to H̄ ′. Clearly,

Ḡ′ ∈ co-C and H̄ ′ ∈ co-D, they are connected, and they

have the same number of vertices. Thus the lemma holds.

A graph is a co-convex graph if its complement is a convex

graph. Clearly co-convex graphs are closed under additions

of universal vertices.

Corollary 4.4 Spanning Subgraph Isomorphism is

NP-complete if

( 1 ) the base graphs are co-convex graphs and the pattern

graphs are co-chain graphs,

( 2 ) the base graphs are bipartite graphs and the pattern

graphs are chain graphs, or

( 3 ) the base graphs are split graphs and the pattern graphs

are threshold graphs.

Proof. The NP-completeness of the case (1) is a

corollary to Theorem 4.1 (1) and Lemma 4.3. To prove

(3), we need Theorem 4.1 (3), Lemma 4.3, and the well-

known facts that threshold graphs and split graphs are self-

complementary [9]. That is, the complement of a threshold

graph is a threshold graph, and the complement of a split

graph is a split graph.

For (2), we cannot directly apply the combination of The-

orem 4.1 (2) and Lemma 4.3 since bipartite graphs and chain

graphs are not closed under universal vertex additions. For-

tunately, we can easily modify the proof of Theorem 4.1 (2)

in Kijima et al. [16] so that the complements of the base

graphs and the pattern graphs are also connected. Then,

Lemma 4.2 implies the statement. Since it will be a repeat

of a known proof with a tiny difference, we omit the detail.

5. Conclusion

We have studied (Spanning) Subgraph Isomorphism

for classes of perfect graphs, and have shown sharp contrasts

of its computational complexity. An interesting problem

left unsettled is the complexity of Subgraph Isomorphism

where the base graphs are bipartite permutation graphs and

the pattern graphs are chain graphs. It is known that al-

though the maximum edge biclique problem is NP-complete

for general bipartite graphs [24], it can be solved in poly-

nomial time for some super classes of bipartite permuta-

tion graphs (see [23]). Therefore, it might be possible to

have a polynomial-time algorithm for Subgraph Isomor-

phism when the pattern graphs are chain graphs and the

base graphs belong to an even larger class like convex graphs.
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[3] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes:

A Survey. SIAM, 1999.
[4] C. J. Colbourn. On testing isomorphism of permutation

graphs. Networks, 11:13–21, 1981.
[5] P. Damaschke. Induced subgraph isomorphism for cographs

is NP-complete. In WG ’90, volume 487 of Lecture Notes in
Comput. Sci., pages 72–78, 1991.

[6] F. Dorn. Planar subgraph isomorphism revisited. In STACS
2010, volume 5 of LIPIcs, pages 263–274, 2010.

[7] D. Eppstein. Subgraph isomorphism in planar graphs and
related problems. J. Graph Algorithms Appl., 3:1–27, 1999.

[8] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W.H. Free-
man and Company, 1979.

[9] M. C. Golumbic. Algorithmic Graph Theory and Perfect
Graphs, volume 57 of Annals of Discrete Mathematics. North
Holland, second edition, 2004.

[10] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid
method and its consequences in combinatorial optimization.
Combinatorica, 1:169–197, 1981.

[11] A. Gupta and N. Nishimura. The complexity of subgraph
isomorphism for classes of partial k-trees. Theoret. Comput.
Sci., 164:287–298, 1996.

[12] P. Heggernes. Treewidth, partial k-trees, and chordal graphs.
Partial curriculum in INF334 - Advanced algorithmical tech-
niques, Department of Informatics, University of Bergen,
Norway, 2005.

[13] P. Heggernes and D. Kratsch. Linear-time certifying recog-
nition algorithms and forbidden induced subgraphs. Nordic
J. Comput., 14:87–108, 2007.

[14] P. Heggernes, D. Meister, and Y. Villanger. Induced sub-
graph isomorphism on interval and proper interval graphs.
In ISAAC 2010, volume 6507 of Lecture Notes in Comput.
Sci., pages 399–409, 2010.

[15] P. Heggernes, P. van ’t Hof, D. Meister, and Y. Villanger.
Induced subgraph isomorphism on proper interval and bi-
partite permutation graphs. Submitted manuscript.

[16] S. Kijima, Y. Otachi, T. Saitoh, and T. Uno. Subgraph iso-
morphism in graph classes. Discrete Math., 312:3164–3173,
2012.

[17] A. Lingas. Subgraph isomorphism for biconnected outerpla-
nar graphs in cubic time. Theoret. Comput. Sci., 63:295–302,
1989.

[18] G. S. Lueker and K. S. Booth. A linear time algorithm for
deciding interval graph isomorphism. J. ACM, 26:183–195,
1979.

[19] D. Marx and M. Pilipczuk. Everything you always wanted to
know about the parameterized complexity of subgraph iso-
morphism (but were afraid to ask). CoRR, abs/1307.2187,
2013.

[20] D. Marx and I. Schlotter. Cleaning interval graphs. Algorith-
mica, 65:275–316, 2013.
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