
Vol. 3 IPSJ Digital Courier Oct. 2007

Regular Paper

Architecture and Performance of Dynamic Offloading Mechanism

for Maestro2 Cluster Network

Keiichi Aoki,† Koichi Wada,† Hiroki Maruoka†

and Masaaki Ono†

In this paper, an architecture of software environment to offload user-defined software mod-
ules to Maestro2 cluster network, named Maestro dynamic offloading mechanism (MDO), is
described. Maestro2 is a high-performance network for clusters. The network interface and
the switch of Maestro2 have a general-purpose processor tightly coupled with a dedicated
communication hardware. MDO enables the users to offload software modules to both the
network interface and the switch. MDO includes a wrapper library with which offload mod-
ules can be executed on a host machine without rewriting the program. The overhead and
the effectiveness of MDO are evaluated by offloading collective communications.

1. Introduction

Several networks for cluster computing have
been developed so far such as Myrinet 1) or Qs-
Net 2). These networks are built with a gigabit-
class physical layer and provide low latency and
high throughput performance. To achieve high
communication performance between applica-
tion layers with these networks, several tech-
niques have been proposed for communication
software. For example, a specialized commu-
nication library for high performance network
such as GM 3) and PM 4) introduces zero-copy
communication 5) for reducing latency. On the
other hand, a host machine consumes much
computing resources to process communication
protocol or to control network devices 6),7). One
of the promising technique to remedy this prob-
lem is to offload communication related process-
ing to network devices.

We can find several researches or products
that propose offloading communication proto-
col to network devices; such as TOE 8)∼10) or
offloaded-MPI 11). Although they have suc-
ceeded in increasing communication perfor-
mance, the host machine still has to control net-
work hardware to handle communication fre-
quently because the unit of offloading is small.
By offloading whole communication library or
a part of the application, the host machine can
be released from the burden of the communica-
tion. This increases an opportunity of overlap-
ping computation with communication.

† Department of Computer Science, University of
Tsukuba

To offload large software modules that used to
be processed on a host machine to network de-
vices, network devices are required to introduce
a high performance processor instead of special
purpose processor such as a network processor,
and a high-capacity memory. We have devel-
oped a high performance cluster network called
Maestro2 12). Maestro2 is composed of network
interfaces and switch boxes. Both the network
interface and the switch box include a general
purpose processor and a high-capacity memory
so that user-defined software modules can be
executed.

To provide users with an efficient and flexi-
ble way for developing offload modules, the of-
floading mechanism for such a network is re-
quired to have the capabilities of 1) dynamic
loading/unloading of modules, 2) request han-
dling between the host and the network de-
vices, 3) low-overhead invoking of communica-
tion, and 4) support for debugging modules.

In this paper, a dynamic offloading mech-
anism for Maestro2, which can offload user-
defined software modules dynamically to the
network devices, is proposed. This mechanism
includes a wrapper library that enables the of-
fload modules to be executed on the host ma-
chines for debugging the modules.

The rest of this paper is organized as fol-
lows. In Section 2, the architecture of the Mae-
stro2 network is described. Section 3 proposes
a dynamic offloading mechanism for Maestro2.
The results of the evaluation are shown and dis-
cussed in Section 4. Section 5 presents related
works. Finally, Section 6 presents concluding
remarks and plans for further work.

683



684 IPSJ Digital Courier Oct. 2007

Fig. 1 Architecture of Maestro2.

2. Maestro2 Cluster Network

2.1 Architecture Overview
As described in the previous section, we have

developed Maestro2 cluster network which has
the capability of executing user-defined soft-
ware. In this section, we will describe briefly the
architecture and implementation of the Mae-
stro2 cluster network.

The Maestro2 cluster network consists of net-
work interfaces and a switch box as shown in
Fig. 1. Network interfaces are connected to
each host machine via the PCI bus and ex-
change messages with the host machine. The
switch box is connected to up to eight network
interfaces via an LVDS (Low Voltage Differen-
tial Signaling) physical layer 13) and is respon-
sible for switching messages.
(1) Network interface

The network interface (NI) is com-
posed of an LVDS transmitter/receiver,
8 K-byte network buffer, MLC-X link
layer protocol, a PCI interface, a Pow-
erPC603e 14) 300 MHz and a 64 M-byte
SDRAM. The MLC-X, the PCI inter-
face, and the network buffer are imple-
mented in a Xilinx VirtexII FPGA 15).
The MLC-X controls the LVDS transmit-
ter/receiver bidirectionally. The LVDS
transmitter/receiver is connected to the
switch box and transfers data at 6.4 Gbps

(3.2Gbps + 3.2 Gbps full-duplex). The
PCI interface maps the address of the
SDRAM into the host machine’s address
and the host machine’s memory address
into the PowerPC’s address.

(2) Switch box
The switch box (SB) currently in-
cludes eight LVDS transmitter/receiver,
four SB interfaces, a crossbar switch,
a PowerPC603e 300MHz, a 32 M-byte
SDRAM, and a switch controller. The
SB interfaces are composed of a mes-
sage analyzer, two MLC-X link layer pro-
tocol, and a 16K-byte network buffer.
It communicates with network interfaces
via LVDS. MLC-Xs and network buffers
in the switch box are similar to the ones
in the network interface. Each message
analyzer is connected to two MLC-Xs.
It picks up headers from messages and
passes them to the PowerPC processor.
The PowerPC analyses the headers re-
ceived from the message analyzer and
controls the switch controller.

As described above, both of the network in-
terface and the switch box of Maestro2 cluster
network have a general purpose processor and
large-capacity RAM on board. By using this
processor, Maestro2 cluster network can control
hardware and handle protocol or other commu-
nication processing independently of host ma-



Vol. 3 Dynamic Offloading Mechanism for Maestro2 Cluster Network 685

chines.
2.2 Message Passing Library
We have also developed a message passing

library that can extract maximal performance
of the network, named MMP 16). This library
is implemented based on a protocol offloading
technology, and includes functions for peer-to-
peer message transfer among host machines and
synchronization.

The firmware of MMP controls the network
hardware and handles the protocol process-
ing such as an addition of a message header.
The application interface functions of MMP are
designed as non-blocking to overlap computa-
tion in application programs with communica-
tion processing. We confirmed that this de-
sign freed the host processor and the host bus
from communication processing and increased
the throughput of communication.

3. Maestro Dynamic Offloading Mech-
anism

3.1 Architecture of MDO
Maestro dynamic offloading mechanism

(MDO) is a software environment for offload-
ing user-defined modules to the Maestro2 clus-
ter network. MDO is composed of one or more
user-defined modules, the MDO library, the
module wrapper library, and the firmware for
the network interface and the switch box. Fig-
ure 2 summarizes the architecture of MDO.

The MDO firmware is currently implemented
as a part of the MMP firmware for the network
interface and the switch box. It loads the mod-
ules transferred from the MDO library. Addi-
tionally it calls the modules when it receives a
request for the module from the MDO library or
receives the message for the module from net-
work.

The MDO library is the library for applica-
tion programs on a host machine. It includes
a dynamic linker/loader to load user-defined
modules dynamically into network devices and
a requester to handle requests for modules is-
sued from application programs.

A user-defined module includes a native ex-
ecutable binary for the processor on the net-
work interface and/or the switch box. It also
includes the information for relocation. A user
can develop modules by a compiler that can
generate ELF (Executable and Linking Format)
files, which include information for relocation.
It is called from the firmware when the MDO
firmware detects a request from the MDO li-

Fig. 2 Architecture of MDO.

brary, or the MDO firmware receives message(s)
for the module. It controls the peripheral net-
work hardware or performs computations after
being called. A native binary in the module is
called by the firmware and controls the hard-
ware on the network device directly to invoke
communication with low overhead.

3.2 Interface Functions of MDO
The MDO library provides interfaces to ap-

plication programs for loading modules and is-
suing requests to them. We will detail about
these interfaces below:
(1) MMP_Regist_mod_NI(...)

This function relocates the specified
module and transfers it to an unused
memory region on the network interface.
To relocate modules, this function in-
vestigates the address information of the
MDO firmware and of the modules that
have already loaded on the network inter-
face, and builds the global symbol table.
Then it resolves symbols’ addresses in the
module by referring the table. Finally, it
transfers the relocated module and regis-
ters the information of that module such
as the functions’ entry addresses to the
MDO firmware on the network interface.

(2) MMP_Regist_mod_SB(...)
This function registers the module to
the switch box. It relocates the
module in the same method as in
MMP_Regist_mod_NI(). Then it trans-
mits the relocated module to the switch
box through the network interface.

(3) MMP_Mod_req(...)
This function is called when an applica-
tion program issues a request to a module
on the network interface. The arguments
passed from the application program are
stored in the request queue on the net-
work interface.

(4) MMP_Mod_recv_post(...)
This function is used to notify a mod-



686 IPSJ Digital Courier Oct. 2007

ule of the target address of the host
machine’s memory for DMA, in order
for modules to transfer messages from
network buffer to the memory of the
host machine. The application program
passes the address information, which is
either a base address or an offset, to mod-
ules by this function. The target address
is calculated from the address informa-
tion by modules.

(5) MMP_Get_mod_req_stat(...)
This function enables an application pro-
gram to receive calculation results from
the module or to wait for the completion
of the execution of the module.

Meanwhile, the MDO module has to contain
callback functions to handle requests from an
application and messages from other modules.
Details of these functions are as follows:
(1) NI_mod_hostreq_handler(...)

Depending on the requests issued from
an application program by
MMP_Mod_req(), this function in the
module loaded on network interface is
called.

(2) NI_mod_recvmsg_handler(...)
When the firmware on a network in-
terface receives a message, it calls this
function. Generic information such as
the size of the message and the source
address of the message is passed as
arguments. Pre-post information for
message reception provided by using
MMP_Mod_recv_post() is also passed.

(3) SB_mod_recvheader_handler(...)
The MDO firmware on a switch box calls
this function whenever it receives a mes-
sage for the offloaded module on the
switch box. The module controls the
hardware on the switch box to transfer
the message to other network interface(s)
or to the memory on the switch box to
process data included in the message.

3.3 Inter-process Communication in
MDO

In MDO, inter-process communication can be
categorized into two types: a) request exchange
between an application program on a host ma-
chine and a module on a network interface.
b) message exchange among modules on net-
work interfaces or between modules on a net-
work interface and on a switch box. Figure 3
depicts details of the inter-process communica-
tion.

Fig. 3 Inter-process communication in MDO.

An application program on a host machine
can issue requests with arguments through
MDO library to the module on the network in-
terface (Fig. 3 (a), (b)). When the application
program issues the requests to the module, the
MDO firmware on the network interface calls
the function with the specific symbol name in
the module with arguments passed from the ap-
plication (Fig. 3 (c)). The module may transmit
several messages per request if necessary, or it
may transmit nothing and do only the compu-
tation. If the module needs to return the re-
sult to the application program, the result can
be transferred via the MDO library (Fig. 3 (d),
(e)).

Modules on network interfaces and on switch
boxes can exchange messages among themselves
without requests from host machines. Similarly,
modules on network interfaces can exchange
messages among themselves through the switch
box (Fig. 3 (f)). Thus, with MDO, host machine
can be freed from the communication burden of
relaying messages performed in collective com-
munication. This reduces the traffic in the host
machine’s bus or overheads in frequent interac-
tions between the communication library and
an application program, and increases the com-
munication performance.

As described above, the module on the net-
work interface and the one on the switch box
can also exchange messages in MDO. When the
MDO firmware on the switch box receives mes-
sages from the module on the network interface,
it calls the module on the switch box (Fig. 3 (g),
(h)). The callee module can transmit messages
to one or more modules on the network in-
terface after executing designated procedures
(Fig. 3 (i)). This feature is effective in reduc-



Vol. 3 Dynamic Offloading Mechanism for Maestro2 Cluster Network 687

ing the number of messages in the network and
the number of phases of communication when
a module or an application program needs to
broadcast, or sum up the calculation results in
multiple host machines.

3.4 Module Wrapper Library
By only being recompiled and linked with

the module wrapper library, the user-defined
modules for the network interface can be ex-
ecuted on the host machine without modifying
their source codes. This is useful for debugging
and examining adequate load partitioning be-
tween the host machine and the network inter-
face. When a module is compiled for a host ma-
chine, the MDO library calls it via the module
wrapper library. The MDO library also hooks
function calls in modules that control network
hardware directly. Then, MDO translates a
hardware-dependent value, such as a physical
address, to make the module to work correctly
on a host machine.

4. Evaluation

4.1 Experimental Environment
We prepared the environment as shown in

Table 1 for experiments. We performed four
experiments on this environment. We will eval-
uate the performance of MDO by comparing
with the performance of the conventional proto-
col offloading. In this evaluation, MDO is com-
pared with the message passing library MMP,
in which a lower communication protocol is
offloaded statically. We use gettimeofday()
function to measure the time on the host ma-
chine in all experiments.

4.2 Performance of Strided Data Trans-
fer

We compared the throughput of strided data
transfer, which is frequently observed in par-
allel processing when arrays are partitioned in
block-cyclic manner and assigned to the multi-
ple hosts, when using MDO with the case when
using MMP. In this experiment, we measured
throughputs when the experimental program
transfers 100 non-contiguous blocks from a host
machine to another host machine with varying
block size. The application program on host
machine passes the block size and the number
of blocks to transfer to the module on the net-
work interface with MDO. Then the module on
the network interface calculates the addresses of
the blocks and controls the DMA hardware to
transfer these blocks. The application program
using MMP calls communication functions of

Table 1 Experimental environment.

CPU Intel Xeon 2.8GHz
Memory 1 G-byte
Network Maestro2 cluster network
OS Debian GNU/Linux 3.1

Fig. 4 Throughput comparison of strided data transfer
using MDO and MMP with varying data size.

MMP to transfer each block.
Figure 4 shows the comparison of the

throughputs. The horizontal axis of the graph
shows the size of one block to be transferred.

As Fig. 4 shows, MDO achieves a higher
throughput than MMP for all block sizes. We
confirmed that the throughput of MDO is 4.8
times as high as one of MMP at maximum.

The experimental program using MMP needs
to issue send/receive requests to the firmware
on the network interface for every single trans-
fer of blocks. In contrast, the module on the
network interface and the experimental pro-
gram on the host machine exchange a request
once at the beginning of the program. Then,
the module on the network interface decides re-
gions to be transferred and controls the DMA
hardware. The firmware can set DMA param-
eters for the subsequent transfer soon after one
block transfer has completed. This reduces the
idle time of the DMA engine and increases the
throughput of strided data transfer.

4.3 Offloading Collective Communica-
tion

We have implemented three collective com-
munications using MDO for this evaluation:
synchronization, broadcast, and allreduce.

When a host machine exchanges messages
with several other host machines by using MDO
in these communications, the module on the
switch box communicates with the modules on
network interfaces. In the case of synchroniza-



688 IPSJ Digital Courier Oct. 2007

Fig. 5 Allreduce communication with MDO.

tion, a module on a network interface sends
a message, which notifies the module on a
switch of the arrival of a synchronization point.
When the module on a switch has received mes-
sages from all the modules on network inter-
faces that joined the synchronization, it con-
trols the crossbar to broadcast the release mes-
sages. In broadcast, the module on the switch
box receives messages from the initiator’s mod-
ule. Then it controls the crossbar switch on
the switch box to broadcast the messages to re-
ceivers’ modules.

Figure 5 shows the communication flow in
the allreduce communication with MDO. When
the application program invokes a collective
communication, host machines send data to the
module on the switch box. Upon receiving the
data, the module performs calculation. Finally
the module transmits the results to all the host
machines simultaneously. Therefore, the num-
ber for message needed in the allreduce commu-
nication is decreased compared with the peer-
to-peer communication between host machines.

Additionally, computations that are neces-
sary for allreduce can be overlapped with com-
putations of the application program on a host
machine, because modules on network devices
can compute independently of host machines.

4.3.1 Overheads of MDO
To evaluate the overheads of MDO, three pro-

grams are executed that synchronize all pro-
cesses on multiple host machines. The first
one uses MMP’s built-in function to synchro-
nize processes. The second one uses the module

Fig. 6 Time of synchronization using MMP built-in
function and MDO.

Fig. 7 Time of synchronization using MDO and
MMP peer-to-peer function.

for synchronization and MDO.
The results are shown in Fig. 6. Although

the MMP’s built-in function used in the first
program performs synchronization in the same
manner as in MDO, it is implemented in a
monolithic firmware and the library of MMP.
On the other hand, synchronization requests in
the second program are processed by the dy-
namically loaded module of MDO. Therefore,
the difference between the results of the first
and the second programs show the overhead of
calling module in MDO. The results show that
the overhead is about 30% of the whole syn-
chronization time.

4.3.2 Performance of Synchronization
To see the advantages of MDO, we compare

the performance of MDO with the performance
using peer-to-peer communication.

Figure 7 shows the results. The perfor-
mance of MDO is same as in the previous ex-
periment. Another one shows the performance
of experimental program using MMP. This
program uses the recursive doubling algorithm
based on peer-to-peer communications used in
MPICH 17). The number of communication
steps required in this algorithm is optimized
for the case where the number of hosts is a
power of two. The number of communication



Vol. 3 Dynamic Offloading Mechanism for Maestro2 Cluster Network 689

Fig. 8 Time of broadcast using MDO and MMP
peer-to-peer function with varying data size.

Fig. 9 Time of broadcast using MDO and MMP peer-
to-peer function with varying the number of
hosts.

steps in these experiments is 2, 4, and 3, when
the number of hosts is 4, 6, and 8, respectively.
Therefore, the time of MMP with 6 hosts is the
longest.

On the other hand, the time of MDO are
almost constant because communication steps
are constant independently of the number of
host processors. The results show that the syn-
chronization program using MDO is three times
faster than the one using peer-to-peer commu-
nication at the maximum.

4.3.3 Performance of Broadcast
We measured the performance of broadcast

by using MDO. We measured the time to com-
plete broadcasting with 8 host machines with
varying data size and the time to broadcast
64K-byte message with varying the number of
host machines. We also performed the same
communication with MMP’s peer-to-peer com-
munication and compared the result with the
one of MDO.

The results are shown in Figs. 8 and 9. All
results show that the broadcast using MDO is
always faster than the one using peer-to-peer
communication between hosts in all cases. Fig-
ure 8 shows the time of MDO is only 38% of the
one of peer-to-peer at minimum. From Fig. 9,

Fig. 10 Time of allreduce using MDO and MMP
peer-to-peer function.

the time of MDO is almost constant even if
the number of host increases. On the other,
the time of MMP increases as the number of
hosts increases. Especially additional commu-
nication time is required when the number of
hosts is not a power of two as is the case with
synchronization. And the time of MDO is up
to 63% smaller than the one of peer-to-peer.
From these results, we confirmed that the time
for broadcast can be reduced effectively by us-
ing MDO.

4.3.4 Performance of Allreduce
We measured the performance of allreduce

with varying the number of hosts. In this exper-
iment, we developed the module which calcu-
lates the product of values received from hosts
and returns the result to all hosts. We also de-
veloped an equivalent function by using MMP’s
peer-to-peer communication as is the case in the
experiment of broadcast, and we compared the
result of MDO with the result of peer-to-peer
communication.

Figure 10 shows the results of this experi-
ment. As this figure shows, MDO was able to
reduce the time for communication up to 39%.

4.3.5 Comparison of Traffic over PCI
Bus

We compared the amounts of data transferred
via host machines’ PCI bus when they perform
broadcast and allreduce with MDO and MMP
peer-to-peer communication. In Fig. 11, we
can see the traffic over a PCI bus when four
and eight hosts perform broadcast (Fig. 11 (a))
and allreduce (Fig. 11 (b)). The traffic consists
of data and control commands for the network
interface. All the traffic on the PCI bus of all
the hosts are accumulated and shown in Fig. 11.

In Fig. 11 (a), the initiator denotes the node
that invoked the broadcast. Broadcast based on
the peer-to-peer communication requires inter-
mediate hosts, which re-send the message soon



690 IPSJ Digital Courier Oct. 2007

Fig. 11 Comparison of traffic over PCI.

after receiving it, for relaying. This relaying
yields traffic on the PCI bus. The intermediate
1 and 2 in Fig. 11 (a) indicate the first and the
second intermediate hosts that relay the mes-
sage. These show the traffic on the PCI bus in
receiving and re-sending the message. In broad-
cast with four hosts, for example, the initia-
tor issues the message twice, intermediate 1 re-
ceives and re-sends the message, and two hosts
receive; i.e., the one from the initiator and the
other from the intermediate 1. In broadcast
with eight hosts, three hosts work as intermedi-
ate 1 and one host works as intermediate 2. On
the other hand, broadcast by MDO requires no
intermediate hosts because the switch box gen-
erates and sends the copies of the message for
broadcast. As a result, traffic on the PCI bus is
reduced by 18% and 42% of peer-to-peer com-
munication in the case of four and eight hosts,
respectively.

Meanwhile, all hosts have to send and receive
data several times in allreduce by peer-to-peer
communication. Figure 11 (b) shows the accu-
mulated PCI traffic of all hosts in sending and
receiving data. The breakdown of the traffic is
not shown in this figure, since in allreduce, each
host behaves as an initiator, an intermediate
node (only in MMP), and a receiver. The num-
ber of send and receive operations is in the order
of log n, where n is the number of hosts. In con-
trast, allreduce by MDO requires only one send
and one receive operations at each host as de-
scribed in the Section 4.3. Figure 11 (b) shows
that the reduction ratios of the traffic on PCI
are 9% and 39% for four hosts and eight hosts,
respectively. It has been confirmed that MDO
reduces more traffic on the PCI bus as the num-
ber of hosts involved in allreduce increases.

From the results shown in Fig. 11, MDO can

reduce the traffic on the PCI bus for both
broadcast and allreduce operations. The reduc-
tion of the traffic improves the efficiency of the
PCI bus and contributes to reducing the execu-
tion time of collective communication.

5. Related Work

Several researches or products that are ca-
pable of offloading communication protocol to
network devices have been proposed or re-
leased so far; e.g., TOE 8)∼10), RNIC 18), or
EMP 5). In addition, we can also find several
researches 19)∼21) that try to increase perfor-
mance by offloading the protocol processing or
a part of the communication library to intel-
ligent network devices such as Myrinet or Qs-
Net. MDO aims to offload not only communi-
cation processing, but also larger units of soft-
ware such as a whole communication library or
a part of an application program.

The processors of the other intelligent net-
works (e.g., LANai on Myrinet or ELAN4 on
QsNetII) have no floating-point unit. MDO and
the general purpose processor on Maestro2 net-
work provide an environment of higher poten-
tial for executing various kinds of applications.

We can find researches 22),23) that try to im-
prove communication performance by employ-
ing one of the SMP nodes for protocol process-
ing. However, it is impossible for these tech-
niques to reduce bus traffic as shown in this pa-
per because the processor has to control their
network hardware via a bus.

The switch of QsNetII has a dedicated hard-
ware for broadcast to increase the performance
in collective communication. The switch of
Maestro2 includes a general purpose processor
tightly coupled with routing hardware. This
can make the switch to be more flexible in en-



Vol. 3 Dynamic Offloading Mechanism for Maestro2 Cluster Network 691

hancing functionality, and MDO provides the
hands-on method to the programmers for of-
floading software module to the switch.

Meanwhile, in the system that allows the
users to offload user-defined software, protec-
tion can be an important issue, since the of-
floaded software may affect the stability of the
system. Fiuzynski, et al. 19) addresses this is-
sue by forcing programmers to use a type-safe
language in developing software to be offloaded.
The offloading mechanism proposed by Wagner,
et al. 20) introduces a virtual machine, on which
offloaded software is executed, to guarantee the
stability. Unfortunately, the current MDO does
not have any protection mechanism. However,
we are developing a new firmware that has the
capability of page-based protection by using
MMU of embedded PowerPC.

6. Conclusion

In this paper, we presented a software envi-
ronment that allows an application program to
offload user-defined modules to the Maestro2
cluster network, named Maestro dynamic off-
loading mechanism (MDO). MDO includes 1)
user-defined modules, 2) the MDO library to
offload user-defined modules to the network in-
terface and/or the switch box dynamically, and
3) the firmware to invoke the loaded modules.

To evaluate the performance impacts of
MDO, we have developed three offload mod-
ules using MDO: synchronization, broadcast,
and allreduce. The evaluation results showed
that MDO is effective in reducing the time of
those collective communications, even though
MDO requires extra time for offloading and in-
voking modules. Additionally, we measured the
traffic over the PCI bus when the hosts per-
form broadcast and allreduce with and with-
out MDO. From the results, we have confirmed
that MDO can reduce the traffic on the PCI
bus by approximately 40% compared to peer-
to-peer communication.

For the future work, we will evaluate the per-
formance of MDO by offloading a part of an ap-
plication. We are also planning to develop a dis-
tributed shared memory system using the MDO
mechanism. Furthermore, we are currently de-
veloping the next generation of the Maestro2
cluster network which has more powerful pro-
cessor and a higher-capacity memory on board.
We will evaluate the performance impacts of
offloading a user-defined module by using this
next-generation network.

Acknowledgments This research was par-
tially supported by Japan Society for the Pro-
motion of Science, a Grant-in-Aid for Scientific
Research(B), No.16300012.

References

1) Boden, N.J., Cohen, D., Felderman, R.E.,
Kulawik, A.E., Seitz, C.L., Seizovic, J.N. and
Su, W.-K.: Myrinet — A Gigabit-per-Second
Local-Area Network, IEEE Micro, Vol.15,
No.1, pp.29–35 (1995).

2) Beecroft, J., Addison, D., Petrini, F. and
McLaren, M.: QsNetII: An Interconnect for Su-
percomputing Applications, Technical report,
Quadrics Ltd. (2003).

3) Myricom, Inc.: The GM Message Passing Sys-
tem (1999).

4) Takahashi, T., Sumimoto, S., Hori, A.,
Harada, H. and Ishikawa, Y.: PM2: High
Performance Communication Middleware for
Heterogeneous Network Environment, Proc.
IEEE/ACM SC2000 Conference, pp.52–53
(2000).

5) Shivam, P., Wyckoff, P. and Panda, D.: EMP:
Zero-Copy OS-Bypass NIC-Driven Gigabit
Ethernet Message Passing, Proc. ACM/IEEE
SC 2001 Conference (SC’01 ), pp.49–57 (2001).

6) Pfister, G.F.: An Introduction to the Infini-
Band Architecture, High Performance Mass
Storage and Parallel I/O, (Hai, J., Toni, C. and
Buyya, R. (Eds.), chapter42, pp.617–632, John
Wiley & Sons Inc (2001).

7) Bierbaum, N.: MPI and Embedded TCP/IP
Gigabit Ethernet Cluster Computing, 27th An-
nual IEEE Conference on Local Computer Net-
works (LCN’02 ), pp.733–734 (2002).

8) Mogul, J.C.: TCP offload is a dumb idea
whose time has come, Proc. 9th Workshop on
Hot Topics in Operating Systems (HotOS IX ),
pp.25–30 (2003).

9) Cline, L., Foong, A., Huggahalli, R., Illikkal,
I., Iyer, R., Makineni, S., Minturn, D., Newell,
D. and Regnier, G.: TCP onloading for data
center servers, Computer, Vol.37, pp.48–58
(2004).

10) Feng, W., Balaji, P., Baron, C., Bhuyan,
L.N. and Panda, D.K.: Performance Charac-
terization of a 10-Gigabit Ethernet TOE, Proc.
13th Symposium on High Performance Inter-
connects (HOTI’ 05 ), pp.58–63 (2005).

11) Brightwell, R. and Underwood, K.D.: An
Analysis of NIC Resource Usage for Offload-
ing MPI, Proc. 18th International Parallel and
Distributed Processing Symposium (IPDPS’04 )
(2004).

12) Aoki, K., Yamagiwa, S., Ferreira, K., Campos,
L.M., Ono, M., Wada, K. and Sousa, L.:



692 IPSJ Digital Courier Oct. 2007

Maestro2: High Speed Network Technology
for High Performance Computing, Proc. 2004
IEEE International Conference on Communi-
cation (ICC2004 ), No.HS01-8 (2004).

13) IEEE Standard Department: IEEE Standard
for Low-Voltage Differential Signals (LVDS)
for Scalable Coherent Interface (SCI ) (1996).

14) Freescale Semiconductor, Inc.: MPC603e
RISC Microprocessor User’s Manual (2002).

15) Xilinx Inc.: Virtex-II Platform FPGA Data
Sheet (2002). http://www.xilinx.com

16) Aoki, K., Yamagiwa, S., Wada, K. and Ono,
M.: Development and Evaluation of Message
Passing Library for Maestro2 Cluster Network,
IEICE TRANSACTIONS on Information and
Systems (Japanese edition), Vol.J89-D, No.5,
pp.919–931 (2006).

17) Gropp, W., Lusk, E., Doss, N. and Skjellum,
A.: A high-performance, portable implemen-
tation of the MPI message passing interface
standard, Parallel Computing, Vol.22, No.6,
pp.789–828 (1996).

18) Hilland, J., Culley, P., Pinkerton, J. and
Recio, R.: RDMA Protocol Verbs Specification
(Version 1.0 ), RDMA Consortium (2003).

19) Fiuczynski, M.E., Martin, R.P., Owa, T. and
Bershad, B.N.: SPINE: A Safe Programmable
and Integrated Network Environment, 8th
ACM SIGOPS European workshop on Support
for composing distributed applications, pp.7–12
(1998).

20) Wagner, A., Jin, H.-W., Panda, D.K. and
Riesen, R.: NIC-Based Offload of Dynamic
User-Defined Modules for Myrinet Clusters,
CLUSTER 2004, pp.205–214 (2004).

21) Petrini, F., Coll, S., Frachtenberg, E. and
Hoisie, A.: Hardware- and Software-Based
Collective Communication on the Quadrics
Network, Proc. IEEE International Sympo-
sium on Network Computing and Applications
(NCA’01 ), pp.24–36 (2002).

22) Falsafi, B. and Wood, D.A.: Scheduling com-
munication on an SMP node parallel machine,
Proc. 3rd International Symposium on High-
Performance Computer Architecture, pp.128–
138 (1997).

23) Almasi, G., Archer, C., Castanos, J.G.,
Erway, C.C., Heidelberger, P., Martorell, X.,
Moreira, J.E., Pinnow, K., Ratterman, J.,
Smeds, N., Steinmacher-Burow, B., Gropp, W.
and Toonen, B.: Implementing MPI on the
BlueGene/L Supercomputer, Euro-Par 2004
Parallel Processing, Springer Berlin/Heidelberg,
pp.833–845 (2004).

(Received September 5, 2006)
(Accepted July 3, 2007)

(Released October 10, 2007)

Keiichi Aoki received his
M.E. in 2004 and his Dr. Eng. in
2007, both from the University
of Tsukuba, Japan. His main re-
search interests are high perfor-
mance parallel and distributed
computing, especially high per-

formance network hardware and communica-
tion software for cluster computing. He is a
member of IPSJ.

Koichi Wada received his
M.E. degree in computer science
in 1981, his Ph.D. degree in com-
puter science in 1984, both from
the Kobe University. He has
been a Visiting Professor at the
University of Victoria, Canada,

in 2000. He is currently a Professor in the De-
partment of Computer Science at the Univer-
sity of Tsukuba in Japan. His research inter-
ests include parallel and distributed computing,
high-performance network architecture, parallel
programming environment, parallel simulation,
and high-performance media processing. He is
a member of IPSJ, IEICE, IEEE, and ACM.

Hiroki Maruoka received
his B.E. degree in computer sci-
ence from University of Tsukuba
in 2006. He is currently a gradu-
ate student of master’s program
at the same university. His re-
search interests include high per-

formance computing, especially general pur-
pose GPU.

Masaaki Ono received his
B.E. in communication engi-
neering in 1981 from Shibaura
Institute of Technology. He is a
Technical specialist at the Aca-
demic Service Office for Sys-
tems and Information Engineer-

ing, University of Tsukuba in Japan. His re-
search interests include digital hardware sys-
tems and FPGA.


