
The Bitboard Design and Bitwise Computing in Conect6 

Shi-Jim Yen1, Jung-Kuei Yang2 
1Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien, Taiwan. sjyen@mail.ndhu.edu.tw 

2Department of Applied Foreign Languages, Lan Yang Institute of Technology, I Lan, Taiwan. kueiy@mail.fit.edu.tw 
 

Abstract: Connect6 is becoming more and more populous in those years. It possesses three characteristics that is a fair 
and highly complex game with simple rules. Searching is an important method that is used in AI to reveal human wisdom. 
Efficiency is the key point to Connect6 except for searching theorems. Most related researches use bits to code the board 
states and relative bitwise computing to model the real problems. In this paper, we use the concept, bitboard, to parse the 
data structure in Connect6 and analysis it’s bitwise computing to accelerate the change of board states and to gain 
information. The result shows that those methods are efficient and can be used to improve the search performance of a 
Connect6 program. 
Keywords: Bitboard, Bitwise Computing, Connect6 

1. Introduction to Connect6 
1.1. The progress of Connect6 

Since Wu (Wu, 2005) offered online board games like 
k-in-a-row or Connect(m,n,k,p,q) in 2005, Connect(19,19,6,2,1) 
or Connect6 which is derived from Komoku has been a very 
popular topic to research. Connect6 is a fair and highly complex 
game with simple rules. It is not a new kind of game, but its 
characteristics offer a new way for research in the future. 
1.2. The game rules 

The rule of Connect6 is very simple. It is a game played by 
two people, one holds black stones and the other white stones. 
Both of them take turns putting their stones on the intersections 
formed by the lines of grids on the 19×19 board. Usually, first 
move will be played by black side to put one stone on the empty 
intersection, and then two sides take turns putting two stones on 
the empty intersections. 

There isn’t the design that stones will be killed and removed, 
so the state of an intersection will not be changed after stones 
are put on it. That means, during the whole game, the state of 
the board won’t return to any state happened before. The one 
who first gets six or more consecutive stones (horizontally, 
vertically or diagonally) of her/his own wins. When all 
intersections on the board are placed without connecting six, the 
game draws. 

2. Basic analysis of Board 
Bitboard is a way to model states by binary coding. It 

transforms states into bits, and uses bitwise computing to 
accelerate the speed of getting information and improve the 
efficiency of searching (Pablo, 2006). The most widely used 
Bitborad is the design of Chess. It uses 64 bits to represent 64 
positions on the board, and employs all kinds of search by using 
computers’ great function of bitwise operators. For the efficiency 
of search, it has nice performance. 

This research analyzes the board based on the notion 
above, and use Connect6 as a sample to develop a data 
structure based on Bitboard and programs of other related 
algorithms. The result of the analysis is suitable for any boards 
of any sizes, so a m×n board is the object to be analyzed. 
2.1. Analyzing the board 

The number of vertical grids is m, and the horizontal is n. 
the squares which are able to be put with stones are named 
Intersection or Cell. The number of the intersection depends on 
the number of grids of m and n, so the number of intersection is 
m×n. Ways to label intersections can be divided into coordinate 
one and the one of index, and their illustrations are as follows: 
2.1.1. The coordinates of intersections 

The coordinates of intersections are constructed by 
horizontal axis X and vertical axis Y; both of them start from the 
upper corner on the slash west of the board. The coordinates of 
the intersections will be represented by I(x,y) where x=0..m-1; 
y=0..n-1, and figure 1 shows the way the coordinates are 
numbered in a 9×9 board. 

X

Y

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (8,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3) (8,3)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (7,4) (8,4)

(0,5) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (7,5) (8,5)

(0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) (7,6) (8,6)

(0,7) (1,7) (2,7) (3,7) (4,7) (5,7) (6,7) (7,7) (8,7)

(0,8) (1,8) (2,8) (3,8) (4,8) (5,8) (6,8) (7,8) (8,8)

 

Figure 1, the numbering of 
coordinates in 9×9 board 

 

807978777675747372

717069686766656463

626160595857565554

535251504948474645

444342414039383736

353433323130292827

262524232221201918

171615141312111009

080706050403020100

 

Figure 2, the direction and 
index of 9×9 board 

2.1.2. The indexes of intersections 
Starting from 0, the upper corner on the slash west of the 

board, and numbering from up to down, the horizontal line is 
prior to the vertical line. Figure 2 shows the way intersections 
are numbered by index. 
2.2. Directional relation 

There is interrelation between intersections when lining. We 
name this interrelation as the directional relation of intersections, 
RD to represent it. This relation depends on the arrangement of 
position forming four directional relations: Horizontal, Vertical, 
Slash West, and Slash East. 

Connected Cell can be formed by the four directional 
relations between each intersection like figure 2. I40 is able to 
connect with Connected Cell I20 and I60 in the same direction. 
Because of the relation between Connected Cell and directional 
position, RD=V,x is used to represent the Connected Cell which 
has the same x on the X axis vertically and x is 0..m-1. 

- 95 -



Therefore, the relations between Connected Cells in four 
directions are displayed as follows: 
 Vertical： } { ),(, xsameIR yxxVD ==  
 Horizontal： }y { ),(, sameIR yxyHD ==  
 Slash West： })( { ),(, yxsameIR yxyxSWD −=−=  
 Slash East： })( ){ ,(yxE, yxsameIR yxSD +=+=  

We can thus assume that in the vertical directional 
intersections with the same x coordinates are Connected Cells, 
and in the same way the notion of other Connected Cells can be 
proved. 
2.3. Line 

According to the four directional relations, all intersections 
of Connected Cells will form a collection, called Line (L for short). 
Because Line is related with directions, we use LD=V,x to describe 
the Lines with the same x coordinates in axis X in the vertical 
direction. Other Lines in other directions will be proved in the 
same way. 
2.3.1. The definition of Line in four directions on the board 
 Vertical： },1..0{ ,, ymxRL xVDxVD ∀−== ==  
 Horizontal： },1..0{ ,, xnyRL yHDyHD ∀−== ==  
 Slash West： },,)1)..(1({ ,y-xW, yxmnyxRL yxSWDSD ∀−−−=−= −==  
 Slash East： },,2..0{ ,, yxnmyxRL yxSEDyxSED ∀−+=+= +=+=  

Every Line has two end-points; we call the intersection with 
smaller index the Start of the Line, and, on the contrary, the 
bigger index will be the End. 
2.3.2. The length and the amount of Line on the board 

The length of a Line includes the amount of intersections 
form Start to End (including the two end-points). We use 

nL VD ==  to show the length of a vertical Line is n. Because the 
vertical Line and the horizontal Line have the same length, we 
can ignore the number of axis x. The number and length of Lines 
in every direction on the board can be obtained through the 
number of grids m, n. The formula is as follows: 
 Vertical: Numbers of lines is m, the length is nL VD ==  
 Horizontal : Numbers of lines is n, the length is mL HD ==  
 Slash West: Numbers of lines is m+n-1, the length is 





−−
>−−∧≠

== others ,
},{},{  },,{

yxm
nmMinyxnmMaxnmifnmMin

L SWD
 

 Slash East: Numbers of lines is m+n-1, the length is 









+−−−
>−−−−

∧≠
==

othersyxmm
nmMinyxnmMaxnmMax

nmifnmMin
L SED

 ,)()1(
},{)()1},{(},{               

  },,{  

The numbers of Lines depend on the numbers of grids m, n, 
and k of the game. k means the least consecutive stones 
needed to win the game in Connect-k. Thus, according to the 
former notion of calculating the Line, the numbers of Lines can 
be divided into Lines without or with length smaller than k. The 
first formula shows the amount of Lines with length smaller than 
k, and the second formula shows the amount of Lines without 
length smaller than k. 
 233)1(2)( −+=−+++ nmnmnm  ……….(1) 
 )1(4233 −⋅−−+ knm  ………………….…….(2) 

2.3.3. The distance between two points on the same line 
Through the feature of the length of Line mentioned above, 

we can find that the distance between Cells can be figured out 
through the coordinates of intersections. If the coordinates of 

two Cells are: P1(x1, y1)、P2(x2, y2), and their index: P2>P1, the 
distance will be like that: Max(x2-x1, y2-y1)+1. 
2.4. Connection 

In a Line, the max range the same stones can develop is 
named Connection (C for short). Through this we can find that 
C⊆Line can be assumed. The connection in a Line will exist by 
the way of interlacing, like black white black…, or white black 
white…, and so on.  

If we put k into consideration, the C in a Line won’t interlace 
definitely. If the length of the C is smaller than k, we will exclude 
it.The way to represent C is similar to Line. The direction, 
end-point, length of Line are stable, but all of them in C are 
unstable. Besides, we use C  to tell the length of C. 
2.5. The mode of connection 
2.5.1. The shape and its binary bitwise coding 

The Shape of connection is the arrangement of stones’ 
related position in C. C  is used to represent the shape of C. 
We use bitwise coding to show the related arrangement of the 
stones in the C, and will be changed into integer. We take Start 
in C as the lower binary-weighted bits string. From Start to End, 
number intersections in turns in which those with stones are 1 
and those without are 0. Take figure 3 for example. The Shape 
is coded as 000111100, so its integer is 60. 

End Start
Length

Stone Color

0 0 0 1 1 1 1 0 0 = 60

0 1 1 1 1 0 0 = 60

Connection

Bitwise Coding

Shape

(a)

(b)

unsigned integer

 

 

Figure 3, the coding of the Shape  
Though the two different shapes with different length, 

000111100 and 0111100, have the same integer, 60, we can 
observe that what it means has great differences because of the 
different length. Thus, when we take the arrangement of 
connected stones into consideration, we also have to take the 
length of a C into consideration in order not to make mistakes. 
2.5.2. Pattern 

According to the coding of the discussion and the shape 
above, we can code all the Shapes with different length based 
on the possible length of the connection in a line on the board. 
We name the shape with its length Pattern. Pattern is a kind of 
integer coding method after taking length of C’s shape into 
consideration. About the addressing method, we precisely 
describe it in 3.3. Connection Set Array. 

3. The design of Bitboard 

3.1. The needed information of Connect6 
There are two kinds of acts in the Connect-k game, offense 

and defense. When the attack side can win by attacking, the 
strategy is offense; if not, the strategy is defense. 
3.1.1. The game states 

According the number of grids m, n, the intersections on the 
board are m × n. There are three possible situations of 
intersections: empty, black, and white. The collection of all these 

- 96 -



situations of intersections is game state. We use this foundation 
to analyze the Connect-k game. 
3.1.2. The needed information 

At present, most of the searching method used as 
Connect6 program is Threat Space Search, TSS. The approach 
is offered by Professor Wu, and, about the specific illustration of 
TSS, please refer to (Wu, 2005). 

Threat Space Search is an improvement of 
Dependency-based Search from Allis in 1994. The main idea of 
both of them is to control the move the defense side can play 
while threat happening to the attack side and the defense side 
has to do defense. In this situation, the attack side searches 
possible moves to achieve a victorious move. Based on this 
notion, the needed information is as follows when doing Threat 
Space Search: 
 The Connection and it’s Pattern 

The goal of Connect-k is to form the connection of 
consecutive k stones, and each side at most can play p stones 
in a move. In this situation, by doing serial offense, TSS will 
cause a situation in which threats is bigger than p. When threats 
is bigger than p, the defense side can only play p stones to do 
defense; under this circumstance, the defense side will lose 
because it can’t defend the attack of the offense side. 

Thus, the search will depend on the information of the 
shape in this kind of game. The connected information of the 
board is the most dependent message because it can help 
understand whether there is threat in the game, and offer 
possible moves to do TSS. 
 Empty Cell 

After some connections, there will be some Empty Cells in 
the connections, so we will have an Empty Cell Pattern. Empty 
Cell Pattern refers to what Empty Cells mean to some 
connection, so connections will decide what Empty Cell Pattren 
will be. The information of Empty Cells depends on what the 
importance of Empty Cell to black or white stones is. Thus, in 
the same situation, the importance of Empty Cells to black or 
white stones is different. 

We calculate the scores of Empty Cells from the Empty Cell 
Pattern. We choose candidate Empty Cells according to their 
scores from high to low when there are candidate Empty Cells. 
3.2. The pattern of the shape 
3.2.1. The coding of the shape 

If the length of some connection is C =L, the number of 
this connection’s shape is 2L. Therefore, to do the coding of the 
shape in Connect-k Game, we start the coding from the length k 
of the shape, and the range of the coding is 0..2k-1. In this way, 
we start from length k, and then k+1…, and so on. 

We can thus get the coding transforming function of 
Connect-k’s shape: L

kL
L CCL +−=Φ 22),( . The function 

supposes the length of C is C =L , and its shape is LC . If 
the length of some connection is 10, and shape is 128, the 
Pattern will be ( ) 10881282212810 610 =+−=Φ , . 
3.2.2. Addressing 

After coding the pattern of the shape, we can use this 
shape to compute the Pattern of all connections in order to 
figure out the meaning of the Pattern. About the discussion of 
the shape, professor Wu has illustrated clearly in his thesis, so 
we won’t discuss it here. 

The coding of the shape and using the coding to do 
addressing can let us get the Pattern of connection in a short 

time instead of spending time calculating the Pattern. In our 
program, we first figure out the meanings of all kinds of shape, 
and record them into the list of the arrangement. By searching, 
we can quickly get the information of a connection. This concept 
is illustrated in figure 4. 

2

Connection’s 
shape and length 1

3

0

220-26-1

...

mapping

0

0

0

0

∞

Address
Field

Threat

Dead 1

Dead 1

Dead 2

Connected

Pattern
{

 

Figure 4, the shape list of 19×19 and its addressing 
3.3. Connection Set Array 

As to the storage of Connection in the board, we use Line 
to be the array storage of addressing. The Line of board is 
stable, so after making sure of the grids’ number m, n, we can 
compute the number of Lines in every direction based on the 
discussion above. Numbering from 0, the way to number the 
Line of the board is Vertical, Slash West, horizontal, Slash East 
based on the direction. 
3.3.1. The index of Line 

The number of Connection in the Line is unstable. It may be 
0 or many Connections, so we use connection set to store 
Connections in the Line. Because the length in the slash 
direction is unstable, the Line in the corner cannot produce 
connection (cause length is smaller than k). thus, we exclude the 
Line in these directions. 

We can in this way correspond it to the Line on the board 
according to the coordinates (x, y) of intersections. Figure 5 
illustrates our concept of addressing method from cell coordinate 
to connection set address. The mapping formula and its range 
are as follows: { }SEHSWV

yxf LLLLyx ,,,),( ),(  →  

LV

Cell Coordinate
(x,y) ...

...
m-1

0

LSW

...

...
2m+n-2k

m

LH

...

...
2m+n-2k+1

2(m+n-k)

LSE

2(m+n-k)+1

3(m+n-k)+1

C1, C2

C1, C2, C3, C4

C1

C1, C2

C1

C1, C2

C1

C1

C1, C2, C3

C1, C2, C3, C4

C1, C2

C1

C1, C2, C3

Address Connection Set

 

Figure 5, illustration of connection set 
 

Vertical 
xL VD ==

 
Range：0..m-1 

Slash West 
1-y+x-2m=1)-(k-1-y)+x-(m+m==SWDL  

Range：m..2m+n-2-2(k-1) 

- 97 -



Horizontal 
ynmL HD −+== 2  

Range：2m+n-1..2(m+n)-2 

Slash East 
yxL SED +==  

Range：2(m+n)-1..3(m+n))-1 

4. Bitwise computing 
Most of the program languages offer bitwise computing 

nowadays. Bitwise computing has very high efficiency among 
computer calculation. After coding the informative structure of 
Connect6, we thus will design related bitwise computing. Only 
when coding and bitwise computing work together can we have 
improvement of computing efficiency. 
4.1 Checking whether the game is over 

There are many ways to check whether the game is over. 
The most used way is to check from 8 orientations of the 
intersections. If there is consecutive k stones, the game is over. 

If we use bitwise computing to proceed the checking 
process, we can start checking from some intersection’s 
end-point whose position is (k-1). Use the vectors of Check 
Mask of length k, and take turns using bitwise operator, “OR”, to 
do bitwise computing. If the number is the same with Check 
Mask, we can learn that the check length is k. The algorithm and 
its example are in figure 6: 
Algorithm- to check whether the game is over: 
 At most 6 times 

 if((Check Mask & C Shape) == Check Mask) 
 Game over; 

 Check Mask <<= 1; 
C Shape : 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0

Check Mask : 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0  

Figure 6, check whether the game is over 
4.2 The Algorithm of calculating Threats 
4.2.1 Professor Wu’s algorithm (Wu, 2005) 

Professor Wu’s algorithm is based on Connection, scanning 
from any point of Connection to another point, checking Sliding 
Window (SW for short) a time. Calculate the stones in a SW; 
when the sum of stones are bigger than or equal to 4, 
accumulate the threats. The concept of the algorithm is as 
follows: 

 C Shape 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0

Sliding WindowThreat Window

 

Figure 7, the concept to count threats 
4.2.2. The approach to accelerate  

Professor Wu’s algorithm can correctly figure out the 
numbers of threats in a Connection. We use two ways to 
improve the algorithm.  
 First, we can jump over the cells in a sliding window 

according to stones checked. 
 The number of jumping equals to the numbers to form 

threat window minus the numbers of stones in a sliding 
window.  

 For example, if there is no piece in a sliding window, we 
can jump over four cells to continue checking another 
sliding window. The reason is that it’s impossible to 
count threat window inside four steps checking of a 
sliding window.  

 Secondly, if it meets the threat window, we go on to check 
behind the farthest empty cell. 

4.3. Occupy Cells 
Occupying cells are the most important operation in state 

transition in Connect6. After occupying a cell, the related 
connection must be changed. 
4.3.1. Occupy Cells into same connection 

When we insert the same stone into a connection, the only 
change of the connection is the shape. At that time, all we need 
to do is to change the shape by using bitwise operator, “OR”, to 
compute the new shape. 

 

C Shape

Insert Shape

0 0 0 0 1 1 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

New Shape 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

 

Figure 8, Occupy Cells in the same Connection 
4.3.2. Occupy Cells into different connection 

It’s not so easy to insert different stone into a connection 
because the connection will be separated into two or three 
connections. Operating in this situation is more complicated 
because the whole Start, End, and Shape of Connection will be 
influenced. The following figure shows how to turn the concept 
into operation. (We only explain how to get the Shape in the two 
end-points and in the middle.) 

C Shape

Insert Shape

0 0 0 0 1 1 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Insert Mask 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Insert Mask 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0Right Shape

AND

 

Figure 9, Occupy Cells in different Connection 
 Use Insert Mask 1 and C shape to compute OR, we get the 

Shape of C on the right side: 11100000。 
 Use Insert Mask 2 and C shape to compute OR, we get the 

Shape of C on the left side: 000011。 
 At last, scan from the middle point to its left and right side, 

the C of the middle point can be sure. 

5. Conclusion 
Connect6 is a very interesting puzzle game. This research 

collects and analyzes Connect6’s design of bitboard and the 
algorithm of its basic operation. We design a program of 
Connect6 according to the concept this research is discussing 
about. The program has nice performance so far. This is the first 
step for us to develop the higher A.I. of Connect6. Hope our 
study is helpful for those who are interested in this field. 

6. Reference 
Allis, L. V. (1994). Searching for solutions in games and artificial 

intelligence. Ph.D. Thesis, University of Limburg, 
Maastricht. 

I-Chen Wu, and Dei-Yen Huang. (2005). A New Family of 
k-in-a-row Games. the 11th Advances in Computer Games 
Conference (ACG'11), Taipei, Taiwan. 

I-Chen Wu, Dei-Yen Huang and Hsiu-Chen Chang. (2005). 
Connect6. ICGA Journal, Vol. 28, No. 4, pp. 234-241. 

P. San Segundo, R. Galan, D. Rodriguez-Losada, F. Matia, A. 
Jimenez, (2006). Efficient search using bitboard models. 
Proceedings XVIII Int. Conf. Conference on Tools for AI 
(ICTAI 06), Washington, pp: 132-138. 

- 98 -




