A Search Algorithm for Finding Multi Purpose Moves
in Sub Problems of Go
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Because of the difficulty in evaluating the board positions, the successes in chess variants
does not directly strengthen Go playing programs. It is believed that most Go playing pro-
grams use subgoal oriented search to decide moves. Subgoals are local targets with well defined
evaluation functions, such as capturing, connection and living. Currently, the overall strength
of Go playing programs are weak. On the other hand, current state-of-the-art algorithms
for solving life-and-death problems overtook professional Go players in terms of speed and
accuracy.

To improve Go playing programs, it is necessary to fill in the gap between the strength of
single subgoal searches and strength of overall play. It is critical to solve the dependencies
between subgoals. For this purpose, it is necessary to maintain the information of each
subgoal search. The information required includes not only the search result but also the
possible inversions of the subgoals. The intersections of inversions are the candidates for
multi purpose moves.

In this paper we focus on presenting a new algorithm for searching inversions. Target
problems are capturing problems of Go. We have tested the algorithm on test problems and

measured the number of nodes searched.

1. Introduction

Compared to the programs of chess like
games, Go playing programs are weak. One
of the reasons is that in the game of Go, exist-
ing evaluation functions are inaccurate and/or
requires great computational effort.

Therefore, many Go playing programs use
subgoal oriented search. A subgoal is a local
target which is easy to evaluate, such as con-
necting stones, capturing stones, life and death
problems, etc.

There are many sophisticated algorithms
for single subgoal search. For example, life-
and-death problem solvers such as GoTools?
and Df-pn based Tsumego Solver®) are very
strong. Their speed and accuracy had overcome
the level of professional players. But overall
strength of Go playing programs remain at the
level of novice players. (It is widely believed
that the strongest Go playing program is about
10 kyu in AGA?® rating.)

To improve Go playing programs, it is nec-
essary to fill in the gap between the strength
of subgoal searches and the strength of over-
all play. One critical element for this purpose
is to resolve the dependencies between different
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subgoals. Without this ability, it is difficult to
find multipurpose moves, and also difficult to
evaluate such moves exactly. For example, it is
difficult to find moves which aims to connect or
to live locally at the same time.

The paper written by Cazenave and Helm-
stetter’) and another paper by Jan Ramon and
Croonenborghs® are two examples of searching
double purpose moves using the idea of trace!)
or relevancy zone”).

These papers assume that a pair of subgoals
are given, and then search for a compound goal.
But in real game play, before starting the search
for compound goals, we have to detect the de-
pendency between two (or more) subgoals. For
this purpose, we have to maintain the informa-
tion of the moves which will affect the results
of subgoals.

We call the moves which will invert the re-
sult of a subgoal, inversions. The intersections
of inversions will be the candidates for multi
purpose moves. We focus on developing a good
algorithm for searching inversions.

Section 2 presents the related work. Section 3
describe the motive for searching inversions.
Section 4 describe the algorithm. Section 5
shows the results of our experiment. Section 6
is for analysis of the results and future work.
Section 7 concludes the paper.
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2. Related Work

The definition of relevancy zome is de-
scribed in the [Thomsen 2000] about “lambda
search””). This is an area which possibly inverts
the result of local subgoal search, if stones are
played in. Thomsen used this idea to solve lo-
cal problems of Go. Relevancy zone is strictly
defined and easy to calculate, but as Thomsen
already pointed out in his paper”, it does not
guarantee 100% correctness.

[Cazenave and Helmstetter 2004] defined
trace?). They used trace to detect the depen-
dencies between two connections. trace is ob-
tained by adding the points that involved with
the tests performed during the local subgoal
search.

In Cazenave’s paper, unions and intersections
of traces are used for searching transitive con-
nections. Unsurprisingly, using union was safer
but slow, and using intersection was fast but
less safe. This is the first attempt to combine
multiple goals into one search using the idea
such as trace. However, the subgoals are lim-
ited to connection problems.

In [Ramon and Croonenborghs 2004]%), rel-
evancy zone is used for searching compound
goals. This can be said to be a generalization
of Cazenave’s paper!). In this paper, subgoals
are not limited to connections but also includes
capturing and living. Their algorithm builds
compound goals by combining subgoals using
logical AND/OR/NOT. On improving speed
for searching compound goals, they use rele-
vancy zone obtained from each subgoal search.

These papers solve problems where two sub-
goals are given. Trace and relevancy zone are
not so strict, and they might detect false de-
pendencies. But that would not be a problem
if two subgoals are already given, because false
dependency could be correctly resolved by the
multi purpose search.

Instead, in this paper we focus on how to find
fairly strict ¢nversion. Our aim is to find depen-
dencies during real game play. If we want to go
on to the safe side, we can use an area which
is large than true inversion. In that case, false
dependencies would be detected. But finding
strict dependencies might get too time consum-
ing in many cases. We have to consider the
trade off between accuracy and speed.

3. The Purpose for Searching Inversion

Compared to Chess like games, evaluating a

board position in the game of Go is difficult for
programs. One reason which is making evalu-
ation difficult is that in Go most position are
not, quiet.

Quiescence search is a strong tool to evalu-
ate positions in Chess like games. But in Go,
quiescence search is not so effective as it is in
Chess.

The main reason for this difference is, unlike
in Chess, the moves played in quiescence search
will not be actually played in Go. In Go, when
we reach an terminal node in quiescence search,
we have to draw back to the original node where
quiescence search had started, and then eval-
uate the board using the result of quiescence
search.

Therefore, during the middlegame of Go,
there are unstable situations remaining all over
the board.

When strong human players play Go, they do
not just focus on direct subgoals. To detect and
use dependencies between subgoals, they main-
tain information of the inversions of subgoals.
Without information of inversions, players will
easily overlook double purpose moves.

Maintaining information of inversions does
not just benefit in using dependencies of sub-
goals. Human players do not investigate board
position from beginning on every turn. They
keep what they thought in the past turns, and
use the information to investigate the current
position. In other words, they analyze the
board position incrementally.

For incremental recognition of the board po-
sitions, the ability to distinguish independent
subgoals and dependent subgoals are necessary.
An easy example is shown in figure 1.

The white stone marked with an “A” is cap-
tured. It can not escape even if white plays first.
The white stone marked with an “B” is also
captured. This is confirmed by subgoal search,
and the board condition will be evaluated as-
suming that “A” and “B” are both captured.
But this is not true.

If white plays at the point marked with an
triangle, white can save one of “A” or “B”. To
evaluate the board condition right, we have take
tnversion into account.

4. Algorithm for Searching Inversion

Definition 1 Inversion : An inversion of a
subgoal is a set of points in which stones were
played, the result of the subgoal search will get
inverted.
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Fig.1 Two ladders

Our target is to develop an algorithm which
is suitable for finding inversions. In this sec-
tion, we describe our algorithm for searching
1NVErsion.

In this section, first, we introduce an exami-
nation about the difficulty of this target. And
then we describe the definition of Relevancy
Zone and also the outline of df-pn algorithm.
Finally, overall algorithm will be shown.

Please note that, in this paper, our target is
limited to capturing of stones.

4.1 Preliminary Examination

An example is shown in figure 2. Let’s con-
sider capturing the white stone marked with a
triangle. For Go players it is easy to see that
the white stone can’t escape from being cap-
tured even if white plays first.

Our aim is to find an area in which if white
plays and black passes, the white stone can es-
cape. The area is shown in the right of figure 2.
The points marked with crosses are the inver-
ston about capturing the white stone.
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Fig.2 Inversion on capturing the white stone.

To find an inversion, ideally we need to search
for all possible capturing ways. If a white
player’s move can make the stone escape if fol-
lowed by black player’s pass, then such a move
is an nversion.

But searching for other winning moves means
less pruning. As shown in figure 3, there are
many possible ways to capture the white stone,
but it is quite time consuming if the search will

not stop by finding one winning way.

Ladder Net
Fig.3 Ladder and Net

We have implemented an algorithm which
search for all possible winning moves, and then
find the inversion. But the speed of the al-
gorithm was close to mini-max algorithm. To
find the inversion shown in figure 2, it needed
to search more than 2 million nodes®). We had
to implement an algorithm which can avoid this
problem.

4.2 Definition of Relevancy Zone

The idea of Relevancy Zone is first described
by Thomsen”.

Original definition of Relevancy Zone requires
the idea of lambda order. It is not exact and
also not preferable to define Relevancy Zone
without using lambda order, but for this pa-
per we do not go further into the definition of
lambda order.

We define our definition of Relevancy Zone.
Please not that this definition is different from
(and not better than) Thomsen’s original defi-
nition.

Definition 2 Shadow Stone Shadow
stones are stones being played in a search.

Definition 3 n-Surrounding Block : 0-

Surrounding Block is the target block for cap-
turing. n-surrounding block is a group of stones
which are adjacent to n — 1-surrounding blocks,
and the number of liberties are less than a
threshold.
The threshold used in this paper is, if in at-
tackers turn [ —n + 2, and if in defenders turn
Il — n + 3, where [ is the number of liberties of
0-surrounding block. °

Definition 4 Relevancy Zone : The union
of shadow stones and the liberties of surround-
ing blocks.

Y This is different from the definition given in Thom-
sen’s paper. To be strict, / should be lambda order.
Instead of lambda order, we used number of liberties
and added 1 for safety.
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4.3 df-pn

This is just an outline of the df-pn algorithm.
Please refer to the original papers?-* for pre-
cise explanation.

We have used df-pn (depth-first proof number
search®)) algorithm for our capture search. For
finding Relevancy Zone, we should use lambda
search (or some other threat based search)
but we have not yet implemented threat based
search for our Go program so we used df-pn.

Figure 4 shows the idea of df-pn algorithm.
Df-pn is an search algorithm for searching
AND-OR trees. It uses proof number and dis-
proof number. In capturing problem of Go, in-
tuitively, proof number is the number of ways
in which the defender can escape, and disproof
number is the number of ways the attacker can
chase the stone.

Proof number and disproof number have a
duality. Figure 4 shows that the proof number
of a node is the MINimum of disproof numbers
of the children. And also, the disproof number
of a node is the SUM of the proof numbers of
the children.

The child node with the smallest disproof
number is searched first.

For the terminal nodes, the value of the proof
number and disproof number are defined as fol-
lows.

win :pn=0,dn =00
If the nodeis lose :pn=o00,dn =0
unknown : pn=1, dn=1

Fig.4 df-pn algorithm

4.4 df-pn with Simulation

Simulation is a technique often used in mate
search. It uses the search result of similar
nodes. It is based on a speculation that in sim-
ilar board positions, the same move would be
good also.

What we expect is that while checking the
candidates for inversion, in many cases the
moves in the past searches are also good moves.
Intuitively, it seems better if we check the moves
in the past searches first, and if it fails then start
searching other possibilities.

To implement this technique we have changed
the terminal value of proof number and disproof
number as follows.

If the node is
win :pn=0,dn =00

lose :pn=o00,dn =0
unknown(win in past) : pn=1, dn=10000
unknown(lose in past) : pn=10000, dn=1
unknown(unknown) : pn=100, dn=100

Df-pn uses a hash table for storing the search
result. We select one hash table used in a
search starting from a similar board position,
and use it as a reference. During search for
inversion, we use this modified method for cal-
culating proof number and disproof number. In
this way the winning moves in the past search
will be checked first. This would improve the
speed of search if these the winning moves are
really similar.

In this paper we used the value 10000, 100
and 1. However, there was no great difference
in search speed by using 100, 10, and 1 respec-
tively.

We are currently using only 1 past result
as a reference. We select the past search re-
sult with the smallest size of relevancy zone,
but this is only a heuristic. ~As a future
work, we are planning to use 2 or more past
search result as references. In that case, the
value of the proof/disproof number of un-
known nodes would be calculated from the
win/lose/unknown ratio of the past searches.
We expect this would result in a more flexible
use of past searches. For example, if a move
leads to win 2 times and lose 1 time, we put a
higher priority for searching the move than to-
tally unknown move. The problem is the trade-
off between the number of memory accesses and
pruning.

4.5 An Example

The basic idea is very simple.

First, we do a normal search. As the result of
the normal search, we get a set of points which
is relevant to this search. These points are tem-
poral candidates for inversion. For each point
we do a search to see if that point is a part of
the inversion.

Figure 5 shows the example of the first search.
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Fig.6 Not an inversion

The left figure shows white failing to save the
stone. The candidates for inversion obtained
from this search is shown in the right.

This set of points are retrieved from the
search tree of the first search. Df-pn uses a hash
table. We crawl through the searched hashtable
and from all nodes within a winning path, re-
trieve relevancy zone which is defined in sec-
tion 4.2.

Then, check the points in the candidates one
by one, to see if it is a part of the inversion.

There will be two cases. One is that the point
turned out that it is not an inversion and the
other is that the point turned out to be an in-
Version.

An example of the first case is shown in fig-
ure 6. The white stone marked with an square
is being checked if this is an inversion. As the
right figure shows, this does not help the white
stone marked with an triangle.

An example of the other case is shown in fig-
ure 7. This case, the white stone with a square
is an inversion.

If all candidates obtained from the first search
were inversions, then it is very easy to get in-
Version.

But we have to consider cases similar to the
case in figure 8. In this case, the white move
with a square is not an inversion. From this
search, we can get a new set of points for the
candidates for inversion, which is shown in the
right of figure 8. This is totally different from

[T 1]
|
|
|
|
|
|
\

Fig.7 An inversion

& &

Fig.8 Inversion with different RZone

the first candidates.

Before checking other candidates, we take
the intersection of the past candidates and this
these new candidates. In general, while check-
ing the candidates, we will encounter points
which are not an inversion. In such cases, we
take the intersection of the candidates and con-
tinue checking for inversion. In this way, we can
recursively limit the candidates for inversion.

Please note that the empty point marked
with a circle in the right of figure 8 was not
included in the first example. This means we
can not just switch to the new smaller set of
candidates for inversion. We have to take the
intersection of candidates point set.

4.6 Overall Algorithm

Overall algorithm is shown in figure 9. The
algorithm is described in a ML like pseudo code.

This version uses simulation. We have also
implemented an algorithm without simulation,
and compared the performance.

The outcome of this algorithm is not only
the inversion. For detecting candidates for
multi purpose, maintaining inversion would be
enough. But for incremental analysis of board
positions, we have to know when we have to do
subgoal search again.

If there are no moves with in the inversion,
the result of the subgoal remains unchanged.
But, the inversion would change by a move out-
side the inversion.

For example, figure 2 shows the inversion for

_80_


denjo
Rectangle


capturing the white stone. If there is a move
played in the stone marked with an square in
the figure 8, the inversion would be changed to
the area shown in figure 8.

Therefore, we have to detect the change in
inversion and search again. To detect this we
are planning to use the union of relevancy zone
denoted rzunion in the pseudo-code.

5. Results and Analysis

We have measured the number of nodes
searched for problems in figure 10,11,12.

The problems multi5, multi5b and multi5c
are provided by Tristan Cazenave.
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multi5b df A inv cp B inv

Fig.10 problemsl

The inversions are marked with crosses. “df”
stands for defending the stone from capturing
and “cp” stands for capturing. “df inv” means,
the stone cannot be saved and searched for the
inversion which make it possible to escape.

For some problems, the inversion is wrong.
For probl and prob2, there are some missing
points, and in multi5 and multi5b, there are
some false points. These errors are because of
the faults of our capturing algorithm. We ex-
pect that if we improve our search algorithm,
we can avoid these errors.

The table 1 shows the number of nodes
searched. The row “Ist search” shows the nodes
searched in the normal search. In other words,
for problem “multi5”, white tried to save the
stone marked with an “A” and failed. The num-
ber of nodes search in the search is 94.

The row “inv” shows the number of nodes
searched in the search for inversion of the 1st
search, and the row “inv sim” shows the inver-
ston search with simulation enabled.

prob3 df inv
prob4 df inv

X X
><><><
@,

O
[T [T
df inv

Fig.12 problems3
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problem 1st search inv | inv sim
multi5 df A 94 16978 15198
multi5 df B 782 19721 13729
multibb df A 910 36914 36399
multi5b cp B 246 3074 2486
multibc df A 96 1861 3370
multibc cp B 135 1474 1162
probl cp 603 | 16430 9875
prob2 cp 755 | 15852 11411
prob3 df 199 | 419732 378116
prob4 df 185 21012 19641
prob5 df 216 10748 10594
Table T Number of nodes searched

6. Analysis and Future Work

First point is that simulation is not so effec-
tive in many cases. One important thing about
simulation is that the order for choosing the
candidates of inversions in the algorithm. First
we expected it will be better if we choose can-
didates further from the target block first. But
it turned out that there are not difference be-
tween the method choosing from the furthest
candidates and the method choosing according
to the coordinate order.

The effectiveness of simulation relies on the
similarity of the positions. We expect that it
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let capture_inversion node =
(* do normal search *)
let (orig_winner, orig_rzone, orig_hashtable) = catpure_search node in

let rec sub inversion rzinter rzunion checked rest reference =
if PointSet.is_empty rest then
(inversion, rzinter, rzunion)

else
let candidate = PointSet.choose rest in
let inv_node = play_move candidate node in 10

let (inv_winner, inv_rzone, inv_hashtable) =
capture_search_with_simulation inv_node reference
in

if orig-winner = inv_winner then
(* candidate is not inversion *)
let newrzinter = PointSet.inter rzinter inv_rzone in
let newrzunion = PointSet.union rzunion inv_rzone in
let newchecked = PointSet.add candidate checked in 20
let newrest = PointSet.diff newrzinter newchecked in

let newref =
if (inv_rzone is better than reference) then inv_hashtable
else reference
in
sub inversion newrzinter newrzunion newchecked newrest newref
else
(* candidate is inversion *)
let newinversion = PointSet.add candidate inversion in 30
let newchecked = PointSet.add candidate checked in
let newrest = PointSet.remove candidate rest in
sub newinversion rzinter rzunion newchecked newrest reference
in
sub emptyset orig_rzone orig_rzone emptyset orig_rzone orig_hashtable

Fig.9 Pseudo code of the algorithm

N sl
¢M¢ 481
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prob2
problems2
could be improved more if we use more than 2 is very time consuming. For the capturing prob-
references, and/or use some heuristics for de- lem, if only possible capturing is by a ladder,
tecting the similarity of nodes and candidates there are great number of candidates for inver-
ordering. sion. The difference in problem3 and problem4
Second point is, for problems3, this algorithm clearly shows the difference. We are planning to
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develop some special heuristic for ladder prob-
lems.

Third point is that enclosed problems could
be solved faster. This is common for all Go
subproblems. In the results, mutli5c is solved
faster than multibb.

For searching inversions, often the 1st search
is fast, but the search for inversion takes much
time. Searching for a successful ladder takes
very short time but for unsuccessful ladders, it
often takes 10 times or more time to search.
For this problem, an idea we call weak inversion
might be useful.

Normal inversion inverts the result from win
to lose (or lose to win), but weak inversion
changes the result from win(or lose) to un-
known. If the search for inversion takes too
long time, we cut off the search at a threshold
and mark it as a weak inversion.

We will list some other future work. We al-
ready mentioned in this paper, that inversion
is useful for analyzing the board position incre-
mentally. We will develop such a Go playing
program. Our search algorithm should be im-
proved using threat based search. We have only
shown how to find inversions. We will use this
to solve compound subgoal problems of Go, and
see if we can find some improvements.

Fig.13 How to handle order 2 inversion?

Figure 13 shows a board position. If black
plays first, white stone A or B will be captured.
There are points marked with crosses in the left
figure. The inversion mentioned in this paper
was 1st order. In other words, with only 1 move,
the search result will get inverted. But this ex-
ample shows that there are higher order inver-
sions in real games. This problem is strongly
related to sequence of forcing moves and higher
order inversions. However, this is difficult to
detect because in the Game of Go, 1st order in-
version could be represented by a set of points,

but 2nd order inversion is requires a set of pairs
of points. Solving this kind of dependencies is
remaining as an open point. °

7. Conclusion

We have implemented an algorithm for
searching inversions of subproblems of Go.
This information could be used for detecting
candidates of multi purpose moves.

The experimental results shows that our al-
gorithm can find inversions in a practical time.
There are certain kinds of problems which takes
long time and we are planning to improve it us-
ing the idea described in section 6.
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