

Inferring Entity Types from Enumerative Descriptions

Qian Chen† 岩井原瑞穂‡

†早稲田大学大学院情報生産システム研究科

〒808-0135 福岡県北九州市若松区ひびきの 1-15

E-mail: †chenqian@asagi.waseda.jp, ‡iwaihara@waseda.jp

Abstract Entity class matching has many real world applications, especially in entity clustering, de-duplication and efficient

query processing. Current methods to extract entities from text usually disregard horizontal relationships, concentrating on

either a prototype-based entity which lacks relationship between two clusters or a terminological entity where only hierarchical

relationships are considered. We focus on enumerative descriptions that enlist entity names, together with parent types, often

occurring in web documents as listings and tables. We consider discovering entities and relationships from two strongly related

enumerative descriptions.

We propose a RDF schema-based algorithm to capture a probabilistic RDF graph from enumerative descriptions by

assigning candidate labels to each related token. Our algorithm is iterative: We infer candidate labels from matching sequential

patterns and infer patterns that match well with current instances by updating confidence score on labeling of tokens.

Keyword RDF graph，pattern, Hidden Markov Model

1. Introduction

Enumerative descriptions refer to structured

descriptions which contain listings of entities, where the

order of listings follows a certain unknown order on the

class hierarchy, characterized by a regular expression.

There are many forms of web resources that contain such

enumerative descriptions, such as product descriptions in

e-commerce, Infoboxes of Wikipedia, tables coded by

Media Wiki and listings in the Web pages which starting

with entity names. Infoboxes, tables and listings contain

parent types in areas like section titles and adjoining table

cells.

As an example of enumerative descriptions,

e-commercial real product descriptions are shown in Table

1. In the first line, the Lumsing Battery is compatible with

a list of smart devices of different class. Multiple views

need to be considered when we make a choice on whether

the type hierarchy is a type tree or a type graph (multiple

parents). For example, views are different from categories,

prices, OS. In this case, type graphs, not trees, are

appropriate. We intend to capture a type graph from

product descriptions.

RDF1 (Resource Description Framework) is a general

standard for describing such structured descriptions on

Web resources and capturing their relationships. In RDF,

1 http://www.w3.org/RDF/

entities are represented as sets of <subject, predicate ,

object> or <subject, property, object> triples. In a triple

of predicate, both subject and object are entities, while in

a triple of property, its subject is an entity, the property is

an attribute name, and the object is a value of the attribute.

Because of the dynamic property of Web, the flexibility of

the RDF model can make it easy for its schema and data to

be modified, integrated and linked to other datasets. In

the graph model of RDF, subjects and objects are

represented as nodes, and predicates and properties are

represented as a directed edge from a subject to an objec t.

After the release of RDF, a large amount of structured

data have been converted to RDF and published on the

Web and has been widely used in real applications,

especially for datasets whose providers update the data

frequently, such as DBpedia 2 (the structured data

counterpart of Wikipedia) and Freebase 3 . Also, for a

specific domain, it is not enough to simply reuse a

general-purpose ontology which has limited coverage.

Furthermore, polysemous words need to be resolved into

appropriate types, reflecting their contexts. For example,

the word “Black” can be a color of phones or cases in the

title of ID3 in Table 1.

In this paper, we are interested in the problem of

2 http://dbpedia.org
3 http://www.freebase.com

IPSJ SIG Technical Report

1ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.25
2013/11/26

Table 1 Product descriptions

ID Website Title

1 Amazon

Lumsing 11000mAh 5 x USB External Battery Pack Charger Power Bank For Apple:iPad Mini, iPad 4

3 2, Android Tablets:Samsung Galaxy Tab 2, Note 10.1; Google Nexus 7,10; Acer B1; iPhone 5 4S 4

3GS, iPod; Android Smartphone: Samsung Galaxy S4, S3, S2, Ace,Note 2; HTC One, One X, Desire X;

LG Optimus 4X HD, I7, I9;Nokia Lumia 920, Google Nexus 4, Blackberry Z10, Sony Xperia Z; MP3,

MP4, GPS, Camera, Game Player

2 Amazon

Anker® Astro3E 10000mAh High Capacity Power Bank Pack Portable External Battery Charger for

iPhone 5, 4S, 4, iPad 4, 3, 2, Mini, iPods; Samsung Galaxy S4, S3, S2, Note 2; HTC One, EVO,

Thunderbolt, Incredible, Droid DNA; Motorola ATRIX, Droid; Google Nexus 4, Nexus 7, Nexu s 10; LG

Optimus; PS Vita, GoPro

3 Amazon
GTMax Black Touch Screen Styli Stylus For Samsung, Blackberry, HTC, LG, Pantech, Huawei,

iPhone, Motorola, Nokia, Smartphone, iPad, Asus, Acer, Toshiba, Archos Tablet

4 Amazon
DandyCase White/Grey Waterproof Case for Apple iPhone 4, 4S, iPod Touch 3, 4, iPhone 3G, 3GS, &

Other Smartphones

discovering and annotating entities in description which

contains a list of related entities, while taking a different

stance from existing approaches. If a list of related

entities contains a mix of known and unknown entities, the

type of the latter can be inferred from that of the former

and vice versa. Previous works can only annotate entities

that are listed in the catalogue (the known entities), but

are unable to discover new (or unknown) entities. Besides,

we take advantage of the strong relationships between two

datasets to build a more complete RDF instance graph

based on the same RDF schema, which can link two class

hierarchies and extract rich relationships among them. For

example, smart devices and accessories form two distinct

class hierarchies. However, we find that the compatible

relationship between them can help us capture more smart

devices information from accessory descriptions which

contain a list of compatible device models.

Our research question is stated as to find an efficient

approach to infer entity types from enumerative

descriptions which contain listings of entities. For

example, what we want to extract form Table 1 are both

product related entities and product compatibility

relationships. Our application scenario is to collect

partially typed, structured information from web resources,

such as e-commerce sites and Wikipedia, and acquire new

typing information by our algorithm.

Our goal motivates us to find a new method to

facilitate selection of entity types and automatically

expanding RDF graphs. Firstly, since not all type names are

captured in the initial given graph, so the method should

capture existing types and identify new types (classes).

Secondly, since not all type names are listed in the product

descriptions, the syntactic structure of the description

patterns should be captured. We employ a conventional

assumption that an enumerat ion of types is according to a

regular order, such as a navigation path in a RDF schema

graph. But we need to reconstruct the most likely

navigation path from the enumerative description . At last,

we need to improve the accuracy and efficiency of inferring

such types on entities.

Exacting hierarchical and diverse entities along with

implied relationships between them with high accurately

is the main goal of this work. With regards to this, we

developed an iterative pattern-based algorithm called

HoverTyp (Horizontal-Vertical Type Extractor). The

central paradigm used by HoverTyp is an iterative

framework of starting with an initial labeled RDF graph

and given RDF schema which is used to capture

description patterns. They are in turn used to classify more

instances and patterns from the dataset. At every stage,

captured patterns and candidate instances are scored,

reflecting their degree of likelihood. When the score of a

match sequence S that is a sequence of pattern matches

reaches above a threshold, the process terminates and

updates confidence scores on entity types.

The rest of the paper is organized as follows: Section 2

discusses related work. Section 3 describes our data

representation framework. Section 4 presents each of the

proposed techniques in details. The experimental

evaluation is presented in Sections 5. Section 6 concludes

the paper with future work.

2. Related Works

RDF is a W3C standard to represent metadata, which

has several equivalent formats, for example, triple store,

column store, property tables, or graphs. Most of existing

work exploit RDF to improve the performance of query

systems or to extract ontologies.

In existing graph database researches, Zhao and Han

[9] designed a neighborhood signature to directly store

labels within k tops from each vertex. In contrast, our

work involves uncertain candidate labels. Several previous

works in the semantic web area considered uncertainty in

the RDF data. Furthermore, during data integration [1],

IPSJ SIG Technical Report

2ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.25
2013/11/26

the integrated RDF data from different sources may often

contain conflicting or duplicate information. Therefore, a

new probabilistic RDF data graph model has been

proposed. Huang and Liu [2] modeled uncertain RDF data

by a probabilistic database. However, this model assumes

that RDF triples have independent existence probabilities

to appear in reality.

Lian and Chen [3] propose a different format of

probabilistic RDF graphs. The node labels are not

deterministic (multiple labels with probabilities).

Probabilistic RDF graphs are related to our research,

because RDF graphs extracted from product descriptions

are not deterministic, in the sense that there can be

different possible labels to tokens. However, our problem

involves a different model of probabilistic RDF graphs

which have uncertain vertex labels (but certain edge

labels). We need to assign possible labels to tokens and

calculate likelihoods by simultaneously aligning with

given type hierarchies.

After the release of RDF, large amounts of structured

data have been converted to RDF and published on the

Web, while most of structured descriptions do not contain

type triples. TYPifier [5] is a method proposed to infer the

type semantics of structured data and build type hierarchy

tree. They use complex pseudo-schema features to indicate

missing type information and learn type hierarch ies by

proposed systems. RDF schema features are also used in

our approach with different intention. Moreover, type

hierarchies in our RDF graph are more complex and

detailed.

Ontologies have played a central role in the

development of semantic web. RDF Sentence Graph[8] has

been used to automatically summarize ontologies which

are widely used in understanding unstructured documents.

An ontology typically includes concepts and hierarchical

relationships. One of the approaches to learning an

ontology from unstructured text is using lexico -syntactic

patterns. LASER[4] is an iterative process starting with

ISA and HASA seed patterns to effectively discover new

patterns. However, this method only concentrate on the

hierarchical relationships and ignore horizontal

compatible relationships. On the other hand, seed patterns

in our method are not pre-defined, but partially given in

the initial instance graph. Our algorithm tries to infer

types to unknown entities based on discovered patterns in

enumerative descriptions.

In most of real-world extraction applications, a

pattern-based algorithm is used in an iterative process:

Starting with a relatively small set of seed tuples, these

extractors iteratively learn patterns that can be

instantiated to identify new tuples. I4E[6] is proposed as a

graph-based framework that integrates tuples, patterns,

and various trace information at each iteration. I4E

assigns a confidence score to each pattern based on

individual tuples that generate the pattern as well as the

collective set of tuples produced by the pattern. In our

method we also introduce confidence score on every

iteration to update the patterns and prune candidate type

labels. However, our problem involves a different model

of unknown relationships, and enumerative descriptions

contain a list of entities with heterogeneous entity types.

3. Architecture and Background

In this paper, we tackle the problem of inferring entities

types from enumerative descriptions. This section outlines

the architecture of our system and defines assumptions and

principles used in our algorithms.

3.1. System Architecture

HoverTyp is an iterative process. The circle in Figure1

is the main components. It takes preprocessed descriptions

with each word tokenized as input. In addition, it receives

a given RDF schema and initial RDF instance graph. The

next is the main stages:

Figure 3.1 System Architecture

Obtaining seed patterns: for each instance token w in

the initial RDF graph, system identifies occurrences of

each token in the descriptions in the dataset. Based on

one description in which most of w occurs, candidate

extraction patterns are generated.

Assigning candidate labels: apply the current set of

patterns on each description in the dataset and assign

candidate labels on each token in the description based on

Pr e-pr oce sse

d

Descr i p t i on

wi th ea ch wor d

t oken iz ed

Gi ven RDF

sch em a

In i t i a l RDF

ins tan ce gra ph

Seed

pa t t ern s

Ass i gn

cand i da t e la bel s

t o ea ch t oken

Upda t e sc or e

o f a pat t ern

mat ch

Com pl et e

RDF in st an ce

gra ph

IPSJ SIG Technical Report

3ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.25
2013/11/26

a Hidden Markov Model (HMM). The candidate type

labeled on the token should not conflict with the initial

token type. Otherwise, the corresponding pattern cannot

be applied on the description.

3.2. Definitions

We utilize the following assumptions and principles

in HoverTyp.

Assumptions:

 Basic attributes are appearing as columns in

product tables.

 Top-level types, such as model, brand, price, are

given in a table.

 An RDF schema for product descriptions is

given.

 Relationships connect two classes, but no schema

for relationships is given. That is, any two

classes can have a relationship.

 A portion of the RDF graph is given as an initial

graph. We try to grow this initial graph.

Principles:

 Pattern isolation: Patterns are not overlapping

with each other. Each token in the description

must be covered by one and only one pattern .

 Pattern simplicity: Patterns needs to be simple

for efficient matching.

 Pattern repetition: An identical pattern is likely

to be repeated within a description .

 Pattern normalization: Patterns must satisfy the

RDF schema.

4. Solution and Algorithm

We formalize our problem as augmenting RDF

instance graphs through inferring entity types. Intuitively,

an entity is represented by a triple in the RDF graph, so

what we need to do is to find new vertexes and new edges.

Finding new class types: A title in the product

description could enlist multiple types, as shown in Table

1. Since some of these types might be missing in the initial

graph, we need to capture such missing types based on the

RDF schema. On the other hand, a title may not list up all

the class types. So we need to select appropriate class

types.

Finding new relationships: Analogous to finding

new class types, we need to identify corresponding

relationships which link from/to the missing types based

on the RDF schema. In this paper, we use description

patterns to represent the relationships between entity

types.

4.1. Skeleton

We introduce skeletons that represent syntactical

structures of enumerative descriptions of entities.

Skeletons simply capture hierarchal structures of

enumerative descriptions. In the next step, we consider

mapping between skeletons and the RDF graph. A pattern

for capturing entities should be generated from a skeleton

and the RDF graph.

For example, below is an external battery pack

description with compatible information on smart devices.

PowerGen PGMPP12000 12000mAh External Battery

Pack High Capacity Power Bank Charger Triple USB

3Amps output for Apple iPhone 5 4s 4 3Gs 3G, iPod Touch,

iPad 1 2 3 4, The New iPad 3/ HTC sensation, XE, XL, One

X S V, Thunderbolt, Inspire 4G , EVO 3D, EVO 4G, Desire S

Z HD / Samsung Galaxy S3 S2 S 2 II ACE Mini, S Advance,

Galaxy Nexus, Nexus 7, Tab / Motorola Atrix 2, Droid 3 X

X2 Razr Maxx, Bionic, Triumph

In this description, the delimiters are “ ” (space), “,”

(comma) and “/” (slash). We observe that delimiters are

hierarchically organized in the ascending order of 1: white

space, 2: comma, and 3: slush. From the delimiters, we can

construct a tree structure to extract a regular expression.

 We first replace each token with symbol “s”. We

record the original position of each “s” and the

symbol s is not assigned any type. We should

note that the proceeding part “… output for” is

not considered. The first part “s s s s s s s, s s, s s

s s s, s s s s /” corresponds to “Apple iPhone 5 4s

4 3Gs 3G, iPod Touch, iPad 1 2 3 4, The New iPad

3/”.

 We group the lowest level tokens which is

separated by spaces and assign symbol “X” . The

first part “X, X, X, X / X, X, X,” corresponds to

“Apple iPhone…XE, XL,”. Here, the first “X”

corresponds to the first seven tokens “s s s s s s

s”.

 Likewise, we group the sequences of X’s,

delimited by commas, into a symbol “Y”:Y / Y

 Finally, we group the sequences of Y’s , delimited

by slashes, into a symbol “Z”.

We obtain the skeleton Z—Y—X—s. The skeleton is not

yet mapped to any types.

4.2. Description Patterns

One of the applications of HoverTyp is that for a

certain product description, discovering all

compatible models which link to this product. So we

need to identify which token is class type “Model” .

IPSJ SIG Technical Report

4ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.25
2013/11/26

We use description patterns to infer the candidate

entity types.

Description patterns : Occurrences of types can be

categorized into a collection of patterns which is derived

from the RDF schema.

Figure 4.2 Smartdevices RDF schema

Given a seed instance in which each token is marked

with correct types in the RDF graph, we fold repetitions

and subexpression to obtain a pattern.

 The correct types for the tokens are given as

assignment of a type to each symbol ‘s’ .

Skeleton: s s s s s s s, s s, s s s s s, s s s s / s s, s, s, s s s s,

Pattern:c b m m m m m,b m,b m m m m,# # b m/c b,m,m,b m m m,

c: Company b: Brand m: Model, #: non-type tokens (“The New”)

 Fold repetitions: If a pattern contains a list of

continuous same entity types, we fold these

repetitions.

Pattern: c b m+, b m, bm+, b m/c b, m, m, bm+

（Note: '+' is one or more repetition. '*' is zero or more.）

 Further fold common subexpressions

Pattern: [c[bm*|m+]+]+

(Note: ' |' is alternation.)

 We consider assigning types to the skeleton. The

skeleton can be translated into a regulation

expression by the following mapping:

X bm*|m+

Y cX+

Z Y+

 In the next section, we discuss how to map most

plausible regular expressions, based on a probability

distribution extracted from the seed instance.

4.3. Constructing a HMM from the seed instance

and the patterns

4.3.1. Assigning candidate labels (class names) to

each token.

 Values included in the initial RDF graph (seed

instances) can be marked up by P(type|value) = 1

 A certain value sometimes has ambiguous

meanings. Multiple candidate labels need to be

assigned. Eg. “White” can be a color of phones

or cases.

 There exist tokens not related to the RDF graph

(eg. stop words, adjectives). We need to

preprocess descriptions with each word

tokenized and decide whether a token is an

instance value.

 Tokens like “External Battery Pack” are not used

in building the instance graph. But these tokens

are characterizing the product itself.

4.3.2. Assigning transition probabilities

Here we construct a Hidden Markov Model (HMM)

having states on types. Each edge in the state machine of

HMM is labeled with a transition probability on types.

From the seed instance, we obtain transition probabilities

as follows: We count how many times each subexpression

matches, and determine the probabilities on edges

originating from the same vertex .

Figure 4.3.1 a pattern automaton with transition probability

Figure 4.3.2 a pattern HMM with transition probability

For example in Figure 4.3.1, regarding the pattern

‘[c[bm*|m+]+]+’, the subexpression ‘bm*’ appears six

times in the seed instance, and m+ appears twice. Except

the alternation '[bm*|m+]', the state machine has only one

outgoing edge, so we can assign probability 1 to these

edges. But for the alternation '[bm*|m+]', the ratio

between the first and second terms is 3:1. From this ratio

we assign probabilities 0.75 and 0.25, respectively, to the

two outgoing edges corresponding to the alteration. The

smaller probability 0.25 represents the irregular case of

IPSJ SIG Technical Report

5ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.25
2013/11/26

'm,m' without 'b '.

We use this pattern automaton to construct a pattern

HMM (Figure 4.3.2) with transition probability by count

the proportion in the seed instances.

4.4. Assigning types to unknowns

The target instance follows the hierarchical syntactic

structure represented by the seed pattern. But delimiters

can be different among different seed instances, because

descriptions may use different notations depending on

their origins. For example, only in the title of ID 1 in

Table 1, colon “:” is used.

Now discuss assigning types to unknown tokens. For

example: “Samsung:c Galaxy:b 3:x,4:x”. Here,

'Samsung:c' means that the type of 'Samsung' is 'c' and the

symbol 'x ' means an unknown type. We need to find a type

for each occurrence of 'x '.

We use Viterbi algorithm [7] to find the most likely

state sequence for a given description sequence and a

HMM. It enumerates all possible state sequences and

chooses one that maximizes the score. We use the optimal

state sequence to infer the entity types.

The input of the algorithm is:

1) A HMM with state space S = {x 1,…,x k}, the initial

probabilities π i of being start at state i and transitional

probabilities a(i, j) of transitioning from state i to state j.

The HMM is constructed from the seed instance and

pattern. The initial probabilities π i can be extracted from

the HMM as follows: If the seed instance always starts

from "Company", then π i = 1 for Company and π_ j = 0 for

(j != i). If there are multiple initial possible types, their

frequencies shall be reflected on to their probabilities.

Transitional probabilities are also from the HMM through

checking how many times each edges appear in the seed

instance.

 2) Observations {y1, …,yT}. In our model, it

corresponds to a product description, like "Apple iPhone

3/3s/4/4s, iPad 2/mini". Some tokens are assigned types by

the seed instance, and the reminders are of unknown types.

 3) Emission probabilities P(y t |k). The probability of

yt is observed in state k. We can calculate conditional

probabilities P(k|y t) of the opposite direction. Namely, the

possibility of in state k when y t is observed. We apply

Bayes' Theorem: P(yt |k) = P(k|y t)P(y t)/P(k) for emission

probabilities.

For example, we need to calculate P(Apple|Company)

for emission probability. Since "Apple" is in the seed

instance, we know that "Apple" type is "Company". This

means that P(Company|Apple) = 1.

We are approximating the distribution of the target

instance by the distribution of the seed instance, since we

do not know the exact distribution of the target. P(Apple)

is calculated from how much percentage Apple occupies in

the seed instance. Likewise, P(Company) is calculated

from how much percentage Company occurs in the seed

instance. Then we can obtain the emission probability of

P(Apple|Company).

There are tokens of unknown types in the target

instance. We need to estimate emission probabilities of

unassigned types. We also approximate the distribution of

the target by the distribution of the seed instance. We

assume that the state probabilities P(k) are identical

between the target instance and the seed instance.

For example, the description “HTC sensation, XE, XL,

One X S V” has eight tokens. Each of the token probability

P(yt) is calculated as 1/8 based on the target instance. We

may merge target and seed instances to create a larger

frequency distribution. Suppose that in the seed instance,

c(Company), b(Brand) and m(Model) occur by the ratio:

(0.2, 0,3, 0.5). We employ this as the state probabilities

P(k) for the target instance. Now we compute the emission

probabilities P(y t |k) by Bayes' theorem. Here, if we have

no knowledge about the description, P(k|y t) = P(k) and

P(yt |k) = P(y t). Such as P(One|Company)=P(One)= 1/8.

But if we have partial knowledge, such as "HTC" is a

company, then we can construct a better belief on P(k|yt).

We know that P(c|HTC) = 1, P(c) = 0.2 and P(HTC) = 1/8,

then we can calculate the P(HTC|c) = 0.625. Furthermore,

we can know that P(b|HTC)=P(m|HTC)=0 and P(HTC|b)=

P(HTC|m)=0.

The Viterbi algorithm solves the problem of finding the

most optimal state sequence for a given sequence. It uses

dynamic programming to solve the following recurrence

equations:

Here, V t,k is the probability of the most probable state

sequence responsible for the first t observations that has k

as its final state.

4.5. EM algorithm to estimate parameters

We should repeat 4.3 and 4.4 above to improve the

overall score, until convergence. We can employ the

following approach:

 Expectation-maximization algorithm (EM)

 From the result of 4, update scores (confidence) on

labeling of tokens.

IPSJ SIG Technical Report

6ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.25
2013/11/26

5. Conclusion

In this paper, we proposed an iterative process for the

entity type resolution on enumerative descriptions . We use

a given RDF seed instance to generate a skeleton and a

HMM on types. Then, we introduce confidence score on

pattern to return possible (entity, class type) pairs as a

feedback. Augmented RDF instance graphs have various

real world applications. Especially they can be used to

improve the result in both the clustering and

de-duplication problems, and improving quality of query

results.

As future work, we aim to conduct performance

evaluation of the proposed method, and study application

to various types of partially-typed web resources.

References

[1] X. L. Dong, A. Halevy, and C. Yu. Data integration

with uncertainty. VLDBJ, 18(2), 2009

[2] H. Huang, C. Liu. Query evaluation on probabilistic

RDF databases. In WISE, 2009.

[3] X. Lian and L. Chen. Efficient query answering in

probabilistic RDF graphs. SIGMOD’11, 2011.

[4] T.Y. Li, P. Chubak, L.V.S. Lakshmanan. Efficient

extraction of ontologies from domain specific text corpora.

CIKM'12, 2012.

[5] Y. Ma, T. Tra, V. Bicer. TYPifier: inferring the type

semantics of structured data. ICDE '13, 2013.

[6] A.D. Sarma, A.Jain, D. Srivastava. I4E: interactive

investigation of iterative information extraction.

SIGMOD’10 , 2010.

[7] A. Viterbi, "Error bounds for convolutional codes and

an asymptotically optimum decoding algorithm," IEEE

Trans. Inform. Theory,IT-13:260-269, Apr 1967.

[8] X. Zhang, G. Cheng, Y.Z.Qu. Ontology summarization

based on RDF sentence graph. In IW3C2, 2007.

[9] P. Zhao and J. Han. On graph query optimization in

large networks. PVLDB, 3(1), 2010.

IPSJ SIG Technical Report

7ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.25
2013/11/26

