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Abstract Entity class matching has many real world applications, especially in entity clustering, de-duplication and efficient 

query processing. Current methods to extract entities from text usually disregard horizontal relationships, concentrating on 

either a prototype-based entity which lacks relationship between two clusters or a terminological entity where only hierarchical 

relationships are considered. We focus on enumerative descriptions that enlist entity names, together with parent types, often 

occurring in web documents as listings and tables. We consider discovering entities and relationships from two strongly related 

enumerative descriptions. 

We propose a RDF schema-based algorithm to capture a probabilistic RDF graph from enumerative descriptions by 

assigning candidate labels to each related token. Our algorithm is iterative: We infer candidate labels from matching sequential 

patterns and infer patterns that match well with current instances by updating confidence score on labeling of tokens. 
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1. Introduction 

Enumerative descriptions refer to structured 

descriptions which contain listings of entities, where the 

order of listings follows a certain unknown order on the 

class hierarchy, characterized by a regular  expression. 

There are many forms of web resources that contain such 

enumerative descriptions, such as product descriptions in 

e-commerce, Infoboxes of Wikipedia, tables coded by 

Media Wiki and listings in the Web pages which starting 

with entity names.  Infoboxes, tables and listings contain 

parent types in areas like section titles and adjoining table 

cells. 

As an example of enumerative descriptions, 

e-commercial real product descriptions are shown in Table 

1. In the first line, the Lumsing Battery is compatible with 

a list of smart devices of different class.  Multiple views 

need to be considered when we make a choice on whether 

the type hierarchy is a type tree or a type graph (multiple 

parents). For example, views are different from categories, 

prices, OS. In this case, type graphs, not trees, are 

appropriate.  We intend to capture a type graph from 

product descriptions.  

RDF1 (Resource Description Framework) is a general 

standard for describing such structured descriptions on 

Web resources and capturing their relationships.  In RDF, 

                                                                 
1 http://www.w3.org/RDF/ 

entities are represented as sets of <subject, predicate , 

object> or <subject, property, object> triples.  In a triple 

of predicate, both subject and object are entities, while in 

a triple of property, its subject is an entity, the property is 

an attribute name, and the object is a value of the attribute.  

Because of the dynamic property of Web, the flexibility of 

the RDF model can make it easy for its schema and data to 

be modified, integrated and linked to other datasets.  In 

the graph model of RDF, subjects and objects are 

represented as nodes, and predicates and properties are 

represented as a directed edge from a subject to an objec t.   

After the release of RDF, a large amount of structured 

data have been converted to RDF and published on the 

Web and has been widely used in real applications, 

especially for datasets whose providers update the data 

frequently, such as DBpedia 2 (the structured data 

counterpart of Wikipedia) and Freebase 3 . Also, for a 

specific domain, it is not enough to simply reuse a 

general-purpose ontology which has limited coverage. 

Furthermore, polysemous words need to be resolved into 

appropriate types, reflecting their contexts.  For example, 

the word “Black” can be a color of phones or cases in the 

title of ID3 in Table 1. 

In this paper, we are interested in the problem of

                                                                 
2 http://dbpedia.org 
3 http://www.freebase.com 
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Table 1 Product descriptions  

ID Website Title 

1 Amazon 

Lumsing 11000mAh 5 x USB External Battery Pack Charger Power Bank For Apple:iPad Mini, iPad 4 

3 2, Android Tablets:Samsung Galaxy Tab 2, Note 10.1; Google Nexus 7,10; Acer B1; iPhone  5 4S 4 

3GS, iPod; Android Smartphone: Samsung Galaxy S4, S3, S2, Ace,Note 2; HTC One, One X, Desire X; 

LG Optimus 4X HD, I7, I9;Nokia Lumia 920, Google Nexus 4, Blackberry Z10, Sony Xperia Z; MP3, 

MP4, GPS, Camera, Game Player  

2 Amazon 

Anker® Astro3E 10000mAh High Capacity Power Bank Pack Portable External Battery Charger for 

iPhone 5, 4S, 4, iPad 4, 3, 2, Mini, iPods; Samsung Galaxy S4, S3, S2, Note 2; HTC One, EVO, 

Thunderbolt, Incredible, Droid DNA; Motorola ATRIX, Droid; Google Nexus 4, Nexus 7, Nexu s 10; LG 

Optimus; PS Vita, GoPro 

3 Amazon 
GTMax Black Touch Screen Styli Stylus For Samsung, Blackberry, HTC, LG, Pantech, Huawei, 

iPhone, Motorola, Nokia, Smartphone, iPad, Asus, Acer, Toshiba, Archos Tablet  

4 Amazon 
DandyCase White/Grey Waterproof Case for Apple iPhone 4, 4S, iPod Touch 3, 4, iPhone 3G, 3GS, & 

Other Smartphones 

discovering and annotating entities in description which 

contains a list of related entities, while taking a different 

stance from existing approaches.  If a list of related 

entities contains a mix of known and unknown entities, the 

type of the latter can be inferred from that of  the former 

and vice versa. Previous works can only annotate entities 

that are listed in the catalogue (the known entities), but 

are unable to discover new (or unknown) entities.  Besides, 

we take advantage of the strong relationships between two 

datasets to build a more complete RDF instance graph 

based on the same RDF schema, which can link two class 

hierarchies and extract rich relationships among them. For 

example, smart devices and accessories form two distinct 

class hierarchies. However, we find that the compatible 

relationship between them can help us capture more smart 

devices information from accessory descriptions which 

contain a list of compatible device models.  

Our research question is stated as to find an efficient  

approach to infer entity types from enumerative 

descriptions which contain listings of entities. For 

example, what we want to extract form Table 1 are both 

product related entities and product compatibility 

relationships. Our application scenario is to collect 

partially typed, structured information from web resources, 

such as e-commerce sites and Wikipedia, and acquire new 

typing information by our algorithm.  

Our goal motivates us to find a new method to 

facilitate selection of entity types and automatically 

expanding RDF graphs. Firstly, since not all type names are 

captured in the initial given graph, so the method should 

capture existing types and identify new types (classes). 

Secondly, since not all type names are listed in the product 

descriptions, the syntactic structure of the description 

patterns should be captured. We employ a conventional 

assumption that an enumerat ion of types is according to a 

regular order, such as a navigation path in a RDF schema 

graph. But we need to reconstruct the most likely 

navigation path from the enumerative description . At last, 

we need to improve the accuracy and efficiency of inferring 

such types on entities.  

Exacting hierarchical and diverse entities along with 

implied relationships between them with high accurately 

is the main goal of this work. With regards to this, we 

developed an iterative pattern-based algorithm called 

HoverTyp (Horizontal-Vertical Type Extractor). The 

central paradigm used by HoverTyp is an iterative 

framework of starting with an initial labeled RDF graph 

and given RDF schema which is used to capture 

description patterns. They are in turn used to classify more 

instances and patterns from the dataset. At every stage, 

captured patterns and candidate instances are scored, 

reflecting their degree of likelihood. When the score of a 

match sequence S that is a sequence of  pattern matches 

reaches above a threshold, the process terminates and 

updates confidence scores on entity types. 

The rest of the paper is organized as follows: Section 2 

discusses related work. Section 3 describes our data 

representation framework. Section 4 presents each of the 

proposed techniques in details. The experimental 

evaluation is presented in Sections 5.  Section 6 concludes 

the paper with future work.  

2. Related Works  

RDF is a W3C standard to represent metadata, which 

has several equivalent formats, for example, triple store, 

column store, property tables, or graphs. Most of existing 

work exploit RDF to improve the performance of query 

systems or to extract ontologies. 

In existing graph database researches, Zhao and Han 

[9] designed a neighborhood signature to directly store 

labels within k tops from each vertex. In contrast, our 

work involves uncertain candidate labels. Several previous 

works in the semantic web area considered uncertainty in 

the RDF data. Furthermore, during data integration [1], 
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the integrated RDF data from different sources may often 

contain conflicting or duplicate information. Therefore, a 

new probabilistic RDF data graph model has been 

proposed. Huang and Liu [2] modeled uncertain RDF data 

by a probabilistic database. However, this model assumes  

that RDF triples have independent existence probabilities 

to appear in reality.  

Lian and Chen [3] propose a different format of 

probabilistic RDF graphs. The node labels are not 

deterministic (multiple labels with probabilities). 

Probabilistic RDF graphs are related to our research, 

because RDF graphs extracted from product descriptions 

are not deterministic, in the sense that there can be 

different possible labels to tokens. However, our problem 

involves a different model of probabilistic RDF graphs 

which have uncertain vertex labels (but certain edge 

labels). We need to assign possible labels to tokens and 

calculate likelihoods by simultaneously aligning with 

given type hierarchies.   

After the release of RDF, large amounts of structured 

data have been converted to RDF and published on the 

Web, while most of structured descriptions do not contain 

type triples. TYPifier [5] is a method proposed to infer the 

type semantics of structured data and build type hierarchy 

tree. They use complex pseudo-schema features to indicate 

missing type information and learn type hierarch ies by 

proposed systems. RDF schema features are also used in 

our approach with different intention. Moreover, type 

hierarchies in our RDF graph are more complex and 

detailed. 

Ontologies have played a central role in the 

development of semantic web. RDF Sentence Graph[8] has 

been used to automatically summarize ontologies which 

are widely used in understanding unstructured documents. 

An ontology typically includes concepts and hierarchical 

relationships. One of the approaches to learning an 

ontology from unstructured text is using lexico -syntactic 

patterns. LASER[4] is an iterative process starting with 

ISA and HASA seed patterns to effectively discover new 

patterns. However, this method only concentrate on the 

hierarchical relationships and ignore horizontal 

compatible relationships. On the other hand, seed patterns 

in our method are not pre-defined, but partially given in 

the initial instance graph.  Our algorithm tries to infer 

types to unknown entities based on discovered patterns in 

enumerative descriptions.  

In most of real-world extraction applications, a 

pattern-based algorithm is used in an iterative process: 

Starting with a relatively small set of seed  tuples, these 

extractors iteratively learn patterns that can be 

instantiated to identify new tuples. I4E[6] is proposed as a 

graph-based framework that integrates tuples, patterns, 

and various trace information at each iteration. I4E 

assigns a confidence score to each pattern based on 

individual tuples that generate the pattern as well as the 

collective set of tuples produced by the pattern. In our 

method we also introduce confidence score on every 

iteration to update the patterns and prune candidate type 

labels. However, our problem involves a different model 

of unknown relationships, and enumerative descriptions 

contain a list of entities with heterogeneous entity types.  

3. Architecture and Background 

In this paper, we tackle the problem of inferring entities 

types from enumerative descriptions. This section outlines 

the architecture of our system and defines assumptions and 

principles used in our algorithms.  

3.1. System Architecture  

HoverTyp is an iterative process. The circle in Figure1 

is the main components. It takes preprocessed descriptions 

with each word tokenized as input. In addition, it receives 

a given RDF schema and initial RDF instance graph. The 

next is the main stages: 

  

Figure 3.1 System Architecture  

Obtaining seed patterns: for each instance token w in 

the initial RDF graph, system identifies occurrences of 

each token in the descriptions in the dataset. Based on  

one description in which most of w occurs, candidate 

extraction patterns are generated. 

Assigning candidate labels: apply the current set of 

patterns on each description in the dataset and assign 

candidate labels on each token in the description based on 
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a Hidden Markov Model (HMM). The candidate type 

labeled on the token should not conflict with the initial 

token type. Otherwise, the corresponding pattern cannot 

be applied on the description.  

3.2. Definitions 

We utilize the following assumptions and principles 

in HoverTyp. 

Assumptions: 

 Basic attributes are appearing as columns in 

product tables. 

 Top-level types, such as model, brand, price, are 

given in a table.  

 An RDF schema for product descriptions is 

given. 

 Relationships connect two classes, but no schema 

for relationships is given. That is, any two 

classes can have a relationship.  

 A portion of the RDF graph is given as an initial 

graph. We try to grow this initial graph.  

Principles: 

 Pattern isolation: Patterns are not overlapping 

with each other. Each token in the description 

must be covered by one and only one pattern . 

 Pattern simplicity: Patterns needs to be simple 

for efficient matching.   

 Pattern repetition: An identical pattern is likely 

to be repeated within a description . 

 Pattern normalization: Patterns must satisfy the 

RDF schema.  

4. Solution and Algorithm 

We formalize our problem as augmenting RDF 

instance graphs through inferring entity types. Intuitively, 

an entity is represented by a triple in the RDF graph, so 

what we need to do is to find new vertexes and new edges.  

Finding new class types:  A title in the product 

description could enlist multiple types, as shown in Table 

1. Since some of these types might be missing in the initial 

graph, we need to capture such missing types based on the 

RDF schema. On the other hand, a title may not list up all 

the class types. So we need to select appropriate class 

types. 

Finding new relationships: Analogous to finding 

new class types, we need to identify corresponding 

relationships which link from/to the missing types based 

on the RDF schema. In this paper, we use description 

patterns to represent the relationships between entity 

types.  

4.1. Skeleton 

We introduce skeletons that represent syntactical 

structures of enumerative descriptions of entities. 

Skeletons simply capture hierarchal structures of 

enumerative descriptions. In the next step, we consider 

mapping between skeletons and the RDF graph. A pattern 

for capturing entities should be generated from a skeleton 

and the RDF graph.  

For example, below is an external battery pack 

description with compatible information on smart devices.  

PowerGen PGMPP12000 12000mAh External Battery 

Pack High Capacity Power Bank Charger Triple USB 

3Amps output for Apple iPhone 5 4s 4 3Gs 3G, iPod Touch, 

iPad 1 2 3 4, The New iPad 3/ HTC sensation, XE, XL, One 

X S V, Thunderbolt, Inspire 4G , EVO 3D, EVO 4G, Desire S 

Z HD / Samsung Galaxy S3 S2 S 2 II ACE Mini, S Advance, 

Galaxy Nexus, Nexus 7, Tab / Motorola Atrix 2, Droid 3 X 

X2 Razr Maxx, Bionic, Triumph 

In this description, the delimiters are “ ” (space), “,” 

(comma) and “/” (slash). We observe that delimiters are 

hierarchically organized in the ascending order of 1: white 

space, 2: comma, and 3: slush. From the delimiters, we can 

construct a tree structure to extract a regular expression.  

 We first replace each token with symbol “s”. We 

record the original position of each “s”  and the 

symbol s is not assigned any type. We should 

note that the proceeding part “… output for” is 

not considered. The first part “s s s  s s s s, s s, s s 

s s s, s s s s /”  corresponds to “Apple iPhone 5 4s 

4 3Gs 3G, iPod Touch, iPad 1 2 3 4, The New iPad 

3/”. 

 We group the lowest level tokens which is 

separated by spaces and assign symbol “X” . The 

first part “X, X, X, X / X, X, X,” corresponds to 

“Apple iPhone…XE, XL,”. Here, the first “X” 

corresponds to the first seven tokens “s s s s s s 

s”. 

 Likewise, we group the sequences of X’s, 

delimited by commas, into a symbol “Y”:Y / Y  

 Finally, we group the sequences of Y’s , delimited 

by slashes, into a symbol “Z”. 

We obtain the skeleton Z—Y—X—s. The skeleton is not 

yet mapped to any types.  

4.2. Description Patterns 

One of the applications of HoverTyp is that for a 

certain product description, discovering all 

compatible models which link to this product. So we 

need to identify which token is  class type “Model” . 
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We use description patterns to infer the candidate 

entity types.  

Description patterns : Occurrences of types can be 

categorized into a collection of patterns  which is derived 

from the RDF schema.  

 

Figure 4.2 Smartdevices RDF schema  

Given a seed instance in which each token is marked 

with correct types in the RDF graph, we fold repetitions 

and subexpression to obtain a pattern. 

 The correct types for the tokens are given as 

assignment of a type to each symbol ‘s’ . 

Skeleton: s s s s s s s, s s, s s s s s, s s s s / s s, s, s, s s s s,  

Pattern:c b m m m m m,b m,b m m m m,# # b m/c b,m,m,b m m m, 

c: Company b: Brand m: Model, #: non-type tokens (“The New”)  

 Fold repetitions: If a pattern contains a list of 

continuous same entity types, we fold these 

repetitions.  

Pattern:  c b m+, b m, bm+, b m/c b,  m, m, bm+  

（Note: '+' is one or more repetition. '*' is zero or more.）  

 Further fold common subexpressions 

Pattern: [c[bm*|m+]+]+ 

(Note: ' |'  is alternation. ) 

 We consider assigning types to the skeleton.  The 

skeleton can be translated into a regulation 

expression by the following mapping:  

X   bm*|m+  

Y   cX+ 

Z  Y+ 

 In the next section, we discuss how to map most 

plausible regular expressions, based on a probability 

distribution extracted from the seed instance.   
 

 

4.3. Constructing a HMM from the seed instance 

and the patterns 

4.3.1. Assigning candidate labels (class names) to 

each token. 

 Values included in the initial RDF graph (seed 

instances) can be marked up by P(type|value) = 1 

 A certain value sometimes has ambiguous 

meanings. Multiple candidate labels need to be 

assigned. Eg. “White” can be a color of phones 

or cases.  

 There exist tokens not related to the RDF graph 

(eg. stop words, adjectives). We need to 

preprocess descriptions with each word 

tokenized and decide whether a token is an 

instance value.  

 Tokens like “External Battery Pack” are not used 

in building the instance graph. But these tokens 

are characterizing the product itself.  

4.3.2. Assigning transition probabilities 

Here we construct a Hidden Markov Model (HMM) 

having states on types. Each edge in the state machine of 

HMM is labeled with a transition probability on types.  

From the seed instance, we obtain transition probabilities 

as follows: We count how many times each subexpression 

matches, and determine the probabilities on edges  

originating from the same vertex .  

 

Figure 4.3.1 a pattern automaton with transition probability  

 

Figure 4.3.2 a pattern HMM with transition probability  

For example in Figure 4.3.1, regarding the pattern 

‘[c[bm*|m+]+]+’, the subexpression ‘bm*’ appears six 

times in the seed instance, and m+ appears twice. Except 

the alternation '[bm*|m+]', the state machine has only one 

outgoing edge, so we can assign probability 1 to these 

edges. But for the alternation '[bm*|m+]', the ratio 

between the first and second terms is 3:1.  From this ratio 

we assign probabilities 0.75 and 0.25, respectively, to the 

two outgoing edges corresponding to the alteration.  The 

smaller probability 0.25 represents the irregular case of 
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'm,m' without 'b '.  

We use this pattern automaton to construct a pattern 

HMM (Figure 4.3.2) with transition probability by count 

the proportion in the seed instances.  

4.4. Assigning types to unknowns 

The target instance follows the hierarchical  syntactic 

structure represented by the seed pattern. But delimiters 

can be different among different seed instances, because  

descriptions may use different notations depending on 

their origins. For example, only in the title of ID 1 in 

Table 1, colon “:” is used. 

Now discuss assigning types to unknown tokens. For 

example: “Samsung:c Galaxy:b 3:x,4:x”. Here, 

'Samsung:c' means that the type of 'Samsung' is 'c' and the 

symbol 'x ' means an unknown type. We need to find a type 

for each occurrence of 'x '.  

We use Viterbi algorithm [7] to find the most likely 

state sequence for a given description sequence and a  

HMM. It enumerates all possible state sequences and 

chooses one that maximizes the score. We use the optimal 

state sequence to infer the entity types.  

The input of the algorithm is:  

1) A HMM with state space S = {x 1,…,x k}, the initial 

probabilities π i of being start at state i and transitional 

probabilities a(i, j) of transitioning from state i to state j. 

The HMM is constructed from the seed instance and 

pattern. The initial probabilities π i can be extracted from 

the HMM as follows: If the seed instance always starts 

from "Company", then π i = 1 for Company and π_ j = 0 for 

(j != i). If there are multiple initial  possible types, their 

frequencies shall be reflected on to their  probabilities. 

Transitional probabilities are also from the HMM through 

checking how many times each edges appear in the seed 

instance.  

  2) Observations {y1, …,yT}. In our model, it 

corresponds to a product description, like "Apple iPhone 

3/3s/4/4s, iPad 2/mini". Some tokens are assigned types by 

the seed instance, and the reminders are of unknown types. 

  3) Emission probabilities P(y t |k). The probability of 

yt is observed in state k. We can calculate conditional 

probabilities P(k|y t) of the opposite direction. Namely, the 

possibility of in state k when y t is observed. We apply 

Bayes' Theorem: P(yt |k) = P(k|y t)P(y t)/P(k) for emission 

probabilities. 

For example, we need to calculate P(Apple|Company) 

for emission probability.  Since "Apple" is in the seed 

instance, we know that "Apple" type is "Company".  This 

means that P(Company|Apple) = 1.  

We are approximating the distribution of the target 

instance by the distribution of the seed instance, since we 

do not know the exact distribution of the target.  P(Apple) 

is calculated from how much percentage Apple occupies in 

the seed instance. Likewise, P(Company) is calculated 

from how much percentage Company occurs in the seed 

instance. Then we can obtain the emission probability of 

P(Apple|Company). 

There are tokens of unknown types in the  target 

instance. We need to estimate emission probabilities of  

unassigned types.  We also approximate the distribution of 

the target by the distribution of the seed instance.  We 

assume that the state probabilities P(k) are  identical 

between the target instance and the seed instance. 

For example, the description “HTC sensation, XE, XL, 

One X S V” has eight tokens. Each of the token probability 

P(yt) is calculated as 1/8 based on the target instance.  We 

may merge target and seed instances to create a larger 

frequency distribution. Suppose that in the seed instance, 

c(Company), b(Brand) and m(Model) occur by the ratio: 

(0.2, 0,3, 0.5). We employ this as the state probabilities 

P(k) for the target instance. Now we compute the emission 

probabilities P(y t |k) by Bayes' theorem. Here, if we have 

no knowledge about the description, P(k|y t) = P(k) and 

P(yt |k) = P(y t). Such as P(One|Company)=P(One)= 1/8. 

But if we have partial knowledge, such as "HTC" is a 

company, then we can construct a better belief on P(k|yt). 

We know that P(c|HTC) = 1, P(c) = 0.2 and P(HTC) = 1/8, 

then we can calculate the P(HTC|c) = 0.625. Furthermore, 

we can know that P(b|HTC)=P(m|HTC)=0 and P(HTC|b)= 

P(HTC|m)=0. 

The Viterbi algorithm solves the problem of finding the 

most optimal state sequence for a given sequence. It uses 

dynamic programming to solve the following recurrence 

equations: 

 

Here, V t,k is the probability of the most probable state 

sequence responsible for the first t observations that has k  

as its final state.  

4.5.  EM algorithm to estimate parameters 

We should repeat 4.3 and 4.4 above to improve the 

overall score, until convergence. We can employ the 

following approach:  

 Expectation-maximization algorithm (EM)  

 From the result of 4, update scores (confidence) on 

labeling of tokens.  
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5. Conclusion 

In this paper, we proposed an iterative process for the 

entity type resolution on enumerative descriptions . We use 

a given RDF seed instance to generate a skeleton and a 

HMM on types.  Then, we introduce confidence score on 

pattern to return possible (entity, class type) pairs as a 

feedback. Augmented RDF instance graphs have various 

real world applications. Especially they can be used to 

improve the result in both the clustering and 

de-duplication problems, and improving quality of query 

results.  

As future work, we aim to conduct performance 

evaluation of the proposed method, and study application 

to various types of partially-typed web resources.  
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