
TeddySweeper: A Minesweeper Solver

Tai-Yen Wu1,a) Ching-Nung Lin1,b) Shi-Jim Yen1,c)

Jr-Chang Chen2,d)

Abstract: Minesweeper is a Partially Observable Markov Decision Process(POMDP) problem.
How to gain more information from current situation affects future decision making significantly.
This paper proposes a heuristic solver which outperforms all present minesweeper solvers including
pure heuristic and hybrid single player MCTS with heuristic approaches. With our methodology,
more hidden information can be extracted from the same situation than previous methods. Fur-
thermore, this solver is practical with efficient performance.

1. Introduction

Fig. 1 Single Point Strategy

Minesweeper is not only a NP-Hard[1] problem but

also a partial information game. The hidden informa-

tion problems are occurred in real life all the time. For

example, Poker has hidden states. Intuitively, solving

a minesweeper game is straightforward. First, (See

Figure 1.) Single Point Strategy[2] focuses on A1 con-

figuration. Because of the rule constraints, B2 and B1

are convinced mines. Second, (See Figure 2.) Equa-

tion Strategy[2] is more advanced. With some assump-

tion, C3 and D3 can be judged as mines. Above two

are common strategies for human to solve minesweeper

problems.

1 Dept. of Computer Science and Information Engineer-
ing, National Dong Hwa University, Hualien, Taiwan

2 Dept. of Applied Mathematics, Chung Yuan Christian
University, Taoyuan, Taiwan

a) kingted77513@gmail.com
b) jironglin@gmail.com
c) sjyen@mail.ndhu.edu.tw
d) jcchen@cycu.edu.tw

Fig. 2 Equation Strategy

Fig. 3 Constraint Satisfaction Problem

In addition, a computer solver can achieve more.

Third, Constraint Satisfaction Problem(CSP)[3] is to

list all possible mine combinations to converge a cer-

tain location is a mine or not a mine. In Figure 3, there

are three combinations as {F,T,F,F}, {F,F,T,F} and

{F,F,F,T} representing position A4, B4, A3, B3 with

F is equal to “Not Mine” and T is equal to “Mine”.

This method concludes A4 is not a mine. But, CSP

The 18th Game Programming Workshop 2013

- 1 -



strategy has a serious drawback. Considering twenty

unopened cells, there will be maximal 220 combina-

tions. When numbers of unopened cells are big, it’s

not solvable because of huge number of combinations.

Last, the remaining unopened cells require to be solved

by guessing. However, A good strategy to guess more

precisely remains an open issue.

2. Method

Fig. 4 Calculate the probability if C2 equals to 4

Fig. 5 Calculate all possibilities in D1

Instead of CSP method which considers all combi-

nation of current board situation in a game, the pro-

posed method named TeddyMethod calculates further

to all possible minefield configuration of each cell and

implements a evaluation function to calculate sum of

all possible minefield scores. A minefield configuration

in a cell is calculated as

(1−Mp)∗
bMPneedM ∗ bL−bMPbesideL−needM

bLPbesideL

∗

(

besideL

needM

)

where Neighborhood (NH) of a cell is legal adjacent

cells of this cell. Mp: percentage if this cell is a mine;

bM : number of remaining mines in the whole board;

needM : number of mines required in the unopened

cells in the NH of this cell; bL: number of unopened

cells in the whole board; besideL: number of unopened

cells in the NH of this cell.

An example (See Figure 4) is that the cell in posi-

tion C2 has two possible outcomes as number 3 and

4. So, the probability of this cell as a number 4 is

(1 − 0) ∗ 1/8 ∗ 7/7 ∗
(

2

1

)

= 1/4. Others can be cal-

culated similarly. A more difficult example (See Fig-

ure 6.) is to calculate the percentage of number 3 in

position C2. The solution differs when C3 or D4 is

a mine or not. This can be calculated in the same

method with extra combination. (See Figure 7.) As-

suming C2 is not a mine, there are six possible situ-

ation. The probability of this cell as a number 3 is

((1− 0) ∗ 1/8 ∗ 7/7 ∗
(

3

1

)

+ (1 − 0) ∗ 1/8 ∗ 7/7 ∗
(

3

1

)

+

(1 − 0) ∗ 2/8 ∗ 6/7 ∗
(

3

2

)

+ (1 − 0) ∗ 1/8 ∗ 7/7 ∗
(

3

1

)

+

(1− 0) ∗ 1/8 ∗ 7/7 ∗
(

3

1

)

+ (1− 0) ∗ 2/8 ∗ 6/7 ∗
(

3

2

)

)/6.

As a result, this method can extract more information

than any previous method.

Fig. 6 4 mines in a 4x4 board

Fig. 7 All variables for this situation

The 18th Game Programming Workshop 2013

- 2 -



Then, an evaluate function is defined as

Score =
8
∑

Cellnumber=1

Case1∗20+Case2∗15+Case3∗10

. Each Case is Boolean result. Case1 : an unopened

certain position can be searched with Single Point

Strategy. Case2 : an unopened certain position can

be discovered with Equation Strategy. Case3 : no

any certain unopened position can be detected. Intu-

itively, when Case1 happens, the remaining unopened

cells are easier to be solved because more information

gained. So, Case1 is assigned a higher value. Case2

and Case3 follow the same logic, especially Case3 is set

to 10 which is the lowest because uncertain guessing

does not provide extra information to solve following

unopened cells. For instance, the score of D1 in Fig-

ure 5 is 0(�1) + 0(�2) + 1/3 (�3) * 20 + 1/3 (�4) *

20 + 0 (�5) + 0 (�6) + 0 (�7) + 0 (�8) = 40/3. As

a result, the score of B1 and D1 are the same which are

higher than C1 which score is 2/3∗10 = 20/3. Hence,

playing B1 or D1 gains higher solving rate than C1.

On the contrary, CSP considers all three positions own

equal solving rate as 1/3.

CSP calculates all combination of unopened cells

and left mines, which is time consuming. Teddy

Method implements a ”Divide and Conquer” (D &

C) algorithm to reduce the combination dramatically.

In some cases, (See Figure8.) D & C algorithm cannot

be applied because the two opened cells correlate with

each other. Otherwise, in other cases, it can reduce a

large number of combinations. (See Figure9 and 10.)

With CSP approach, calculating all possible outcomes

requires 3 ∗ 5 = 15 combination. On the contrary, our

algorithm needs 3 + 5 = 8 combination with a tran-

sition function. This transition function is lightweight

and maintains result consistency. For example, the

result of Area A is scaled to 3 and the result of Area

B is scaled to 5. In addition, this can accelerate the

speed to calculate all possible minefield configuration

which might have enormously combination.

Fig. 8 A situation that Divide and Conquer cannot be
applied

Fig. 9 A situation that Divide and Conquer can be applied

Fig. 10 Divide and Conquer apply on the previous Figure

3. Experimental Result

This solver is implemented in Java with single

thread. All experiments are conducted on a Intel

Celeron G530 2.4 GHz machine which has 8 gigabyte

ram, JDK 1.7 and Windows 7. For 8x8, 9x9 and 16x16

boards, the result are averaged from 100000 games and

10000 games for 16x30 board.

Table 1 and Table 2 show that solving rates of

proposed method are significantly better than pure

Heuristic HCSP and Hybrid MCTS OH solvers espe-

cially in 8x8, 9x9 and 16x16 boards.

Format HCSP[2] Proposed Method
10 mines on 8x8 79.9% 81.52% ± 0.25%
10 mines on 9x9 90.5% 91.78% ± 0.17%

40 mines on 16x16 76.4% ± 0.4% 77.84% ± 0.26%
99 mines on 16x30 38.1% ± 0.5% 38.84% ± 0.94%

Table 1 Results (Winning rates) comparing to the
strongest heuristic Minesweeper solvers

Format OH[4] Proposed Method
10 mines on 8x8 80.2% ± 0.48% 81.52% ± 0.25%
10 mines on 9x9 89.9% ± 0.3% 91.78% ± 0.17%

40 mines on 16x16 74.4% ± 0.5% 77.84% ± 0.26%
99 mines on 16x30 38.7% ± 1.8% 38.84% ± 0.94%

Table 2 Results (Winning rates) comparing to a MCTS
Minesweeper solvers

Table 3 describes the whole running time of with-

out and with D & C. The proposed method speeds up

dramatically which can overcome CSP drawbacks of

slow speed to calculate exponential combination.

Table 4 showed the winning rate in certain time

The 18th Game Programming Workshop 2013

- 3 -



Format Without D & C With D & C
10 mines on 8x8 >1 months 19757s
10 mines on 9x9 >2 weeks 12722s

40 mines on 16x16 >2 months 86150s
99 mines on 16x30 >2 months 57943s

Table 3 Results of total executing time with and without
D & C

constraints. The proposed method outperforms tradi-

tional CSP because it can compute the result quickly

enough instead of sacrificing accuracy limited by time

or combination number.

Format CSP-PGMS CSP only(TeddyMethod)
10 mines on 8x8 75.90% 78.06% ± 0.28%
10 mines on 9x9 80.00% 89.75% ± 0.23%

40 mines on 16x16 45.00% 74.53% ± 0.92%
99 mines on 16x30 34.00% 36.35% ± 0.94%

Table 4 Comparing CSP with time constraints

4. Conclusions

With such high efficiency method, it archives the

present world best minesweeper solver. It is possible

to design an automatically adjusting parameter mech-

anism for the proposed evaluation function to gain

higher solving rates. Also, the D & C CSP algorithm

can apply on other problems. In the future, combining

the proposed method with single player MCTS might

increase solving rates since this method outperforms

other heuristic methods.

References

[1] Allan Scott, Ulrike Stege, and Iris Van Rooij,
”Minesweeper May Not Be NP-Complete but Is Hard
Nonetheless”, The Mathema tical Intelligencer, 2011,
Pages 5-17.

[2] Dmitry Kamenetsky and Choon Hui Teo, ”Graphical
Models for Minesweeper Project Report”, 2007.

[3] Chris Studholme, ”Minesweeper as a Constraint Sat-
isfaction Problem”, Unpublished project report, 2000.

[4] Olivier Buffet, Chang-Shing Lee, Woan-Tyng Lin,
and Olivier Teytaud, ”Optimistic Heuristics for
MineSweeper”, Internatio nal Computer Symposium,
2012, Pages 199-207.

The 18th Game Programming Workshop 2013

- 4 -




