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Abstract: This paper aims to detect features of coordinated attacks by applying data mining techniques, namely Apri-
ori with PrefixSpan, to the CCC DATAset 2008–2010, which comprises captured packet data and downloading logs.
Data mining algorithms enable us to automate the detection of characteristics in large amounts of data, which conven-
tional heuristics cannot deal with. Apriori achieves a high recall but with false positives, whereas PrefixSpan has high
precision but low recall. We therefore propose a hybrid of these two algorithms. Our analysis shows a change in the
behavior of malware over the past three years.
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1. Introduction

Malware has been evolving constantly. Conventional single-
malware attacks have become less frequent any more recently, as
shown by the number of malware downloading events observed
by the Cyber Clean Center (CCC) [6] in Fig. 1, where the hori-
zontal axis shows the weekly frequency of events.

However, instead of straightforward, single-malware attacks,
the mainstream has shifted to more complicated, multiple-
malware infections controlled within a botnet, with many servers
infected by malware in a coordinated attack on a target host.
In Ref. [5], there has been observed sequential infections in the
CCC DATAset, containing packet data captured by 94 honeypots
in which a honeypot is infected by multiple distinct malwares,
scheduled in the same order. Although the servers were assigned
different IP addresses, it turns out that there was a correlation be-
tween the malware infections. In this paper, we call such multiple
infections made by several servers coordinated botnet attacks.

Understanding the coordinated botnet attacks are getting more
important recently. Fist of all, the coordinated attack ensures high
degree of robustness. Even if a server is detected and blocked,
many other servers compensate the role of blocked server. Sec-
ondly, the information of coordinated attack patterns would help
to improve the ability to respond. For instance, if we learn the
frequency of downloading events for IP address and port num-
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Fig. 1 Number of single malware downloads (2007–2010).

bers in the serious of download, we identify the most significant
address or port to block, e.g., bottle-neck of botnet, which allows
to minimize change of configuration. The statistics of coordi-
nated pattern can be used for improvement of malware propa-
gation models [10]. Finally, the analysis results in coordinated
botnet attacks are useful for network forensics perspective. The
particular sequence of attacks are used as a fingerprint of attacker,
i.e., an evidence for unique identification to a botnet.

Moreover, in recent years, “Gumblar” and other Web-based
malware have introduced an attack called drive-by-download,
which involves many Web servers forcing target hosts to down-
load malware, thereby increasing the resulting damage. It is
almost impossible to trace the path of downloads manually be-
cause of the quantities and types of packets used in the drive-by-
download attack. Instead, we need to use a data-mining algorithm
for analysis.

There are two major data-mining techniques for extracting

The primary version of this work has been published in the 13th and In-
ternational Conference on Network-Based Information Systems (NBiS
2010), IEEE and the 14th and International Conference on Network-
Based Information Systems (NBiS 2011), IEEE.
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Table 1 Differences between Apriori and PrefixSpan.

Apriori PrefixSpan
Proponent Agrawal et al. [1] Pei et al. [2]
Extraction Association rule Sequential pattern

(A, B→ C) (A, B, *, C)
Precision Support, Confidence Confidence
Feature A set of items (unordered) Sequence (in order)

valuable features of the malware from downloading logs, namely
Apriori [1] and PrefixSpan [2]. The Apriori technique was de-
signed to detect significant correlations within a set of items to
extract rules for items with high support (a fraction of the subset
of items). Support is a useful feature for detecting all possible co-
ordinated behaviors among servers. However, since Apriori deals
with a subset of downloading events without considering the or-
der of events, it has a false-positive ratio. For example, a sequence
of events a and then b is equivalent to one of b and a in Apriori.
The detected coordination patterns in Apriori may contain false
coordination such as two independent servers happening to work
at almost the same time by chance. Therefore, its confidence is
not high.

On the other hand, PrefixSpan considers the sequence of down-

loading events that was ignored in Apriori. It would therefore
be expected to have a higher accuracy than Apriori. However,
PrefixSpan does not evaluate the supporting of rules. Therefore,
using the sequential pattern mining in PrefixSpan can improve
the accuracy of the association rules by considering time series
of downloading events that is the drawback of Apriori [4], [9].
Table 1 summarizes the differences between Apriori and PrefixS-

pan.
In this paper, we examine these two data mining techniques,

Apriori and PrefixSpan, in terms of a dataset of actual down-
loading events, namely the CCC DATAset 2008–2010 [5], [6].
The focus of our analysis is the changing behavior of malware
over the past three years. Our experimental analysis investigates
the features of and changes in coordinated attacks. Interestingly,
the number of malware infections has been decreasing over these
three years, suggesting to us that the mainstream of botnet attacks
has shifted from single servers to multiple coordinated servers
with Web-based drive-by-downloading malware.
Our Contribution

In summary, we make the following three contributions in this
paper:
• We introduce a coordinated attack performed by botnet and

show some properties of attack including the length of at-
tack sequence (Section 4.3), the average duration of attack
(Section 4.4), and the change of frequencies for three years
(Section 4.5).

• We proposed a new hybrid scheme of Apriori and PrefixSpan
for detection of coordinated botnet attacks, which improves
accuracy of detection.

• We demonstrate our scheme to detect coordinated attacks
from CCC Dataset. Our empirical analysis show that our
hybrid scheme detects attacks accurately in practical use.

The rest of the paper is organized as follows. Section 2 de-
scribes the building blocks for this study, the two data-mining
algorithms. In Section 3, we define the botnet coordinated at-

Table 2 A transaction example.

TID A B C D E
1 1 1 1
2 1 1 1
3 1 1 1 1
4 1 1

tacks and show some typical behavior. In Section 4, we show
the results of our analysis using the data-mining algorithms and
accuracy of detection of coordinated attacks. The idea of hybrid
is mentioned in Section 5 for improving the accuracy. Section 6
give the concluding remarks.

2. Building Blocks

2.1 The Apriori Algorithm
Apriori is a well-known algorithm for association-rule discov-

ery described by Agrawal et al. [1]. It enables the efficient dis-
covery of useful association rules by excluding rules whose sup-
port and confidence is smaller than given support and confidence
thresholds. With the minimum-support condition, we can elimi-
nate the examination of many useless candidate rules.

Association rules are of the form

X(antecedent)⇒ Y(consequent)

from a given set.
Support is the probability that an association rule (X ⇒ Y) can

be shown for a set of all transactions N, and is defined as

Supp(X ⇒ Y) =
|X ∩ Y |

N

Confidence is the probability that the rule is satisfied, namely
the chance of Y being true if X is true. The definition is given by

Conf(X ⇒ Y) =
|X ∩ Y |
|X|

For example, the association rule B,C ⇒ E in Table 2 has
support and confidence given by

Supp(B,C ⇒ E) = 2/4 = 0.5,

Conf(B,C ⇒ E) = 2/2 = 1.

Therefore, the rule B,C ⇒ E has a support of 50% and a confi-
dence of 100%. In other words, this rule occurs with a probability
of 50%, and B,C ⇒ E occurs with a probability of 100% when-
ever B and C occur.

We show Algorithm 1 [1] which generates candidate sets from
a large item sets whose support is greater than ε · |T |. By Ck de-
note a candidate set for length k and count[c] is a count of item
set c in the dataset T .

2.2 The PrefixSpan Algorithm
Sequential pattern mining is a method for discovering subse-

quence patterns in a database of sequences, where each sequence
comprises a list of elements and each element comprises a set of
items. Given a user-specified minimum support threshold as a
condition, sequential pattern mining aims to find all of the fre-
quent subsequences, i.e., those subsequences whose occurrence
frequency in the set of sequences is greater than or equal to the
minimum support. The sequential-pattern-mining method called
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Algorithm 1 Apriori
Input: dataset T and constant ε

1: L1 = {1-item set}
2: k = 2

3: while Lk−1 � ∅ do

4: Ck = {c ∈ a ∪ {b}|a ∈ Lk−1, b ∈ ⋃
Lk−1, b � a}

5: for transactions t ∈ T do

6: Ct = {c|c ∈ Ck, c ⊂ t}
7: for candidates c ∈ Ct do

8: count[c] = count[c] + 1

9: end for

10: end for

11: Lk = {c ∈ Ck |count[c] ≥ ε}
12: k = k + 1.

13: end while

14: return L2, . . . , Lk.

Table 3 A sequence database.

Sequence id Sequence
100 PE WO TR

200 PE TR WO

300 BK PE TR TS WO

400 TS PE PE TR WO BK

500 PE WO TR WO

PrefixSpan (Prefix-projected Sequential pattern mining) was first
proposed by Jien Pei [2].

Let ai, b j be items and let αi, β j be sequences of items such that
α = 〈a1a2...an〉 and β = 〈b1b2...bm〉. Then α is subsequence of β,
denoted by α  β, if and only if there exist integers j1, j2, ..., jn,
where 1 ≤ j1 < j2 < ... < jn ≤ m, such that a1 = b j1 , a2 =

b j2 , ..., an = b jn . A sequence database S is a set of tuples 〈sid, s〉,
where sid is a sequence id and s is a sequence. The support of a
sequence α in a database S is the number of tuples in the database
containing α, i.e., support(α) = |{〈sid, s〉|〈sid, s〉 ∈ S , α  s}|.
Given a positive integer min sup as a support threshold, a se-
quence α is called a frequent sequential pattern in database
S if the sequence is contained in at least min sup tuples in the
database, i.e., support(α) ≥ min sup. The number of items in a
sequence is called the length of the sequence, and a sequential
pattern of length � is called an �-pattern.

In terms of the PrefixSpan algorithm, let α and β be sequences
〈a1...an〉 and 〈b1...bm〉, respectively.
( 1 ) Prefix and Postfix: sequence α is a prefix of β if and only if

ai = bi for i = 1, ...,m. For example, 〈a a b c〉 is a prefix of
〈a a b c d d a b〉, with the sequence after the prefix be-
ing the postfix. That is, 〈d d a b〉 is the postfix in
〈a a b c d d a b〉.

( 2 ) Projection: Let α, β, γ be sequences such that β  α, γ  α.
Sequence γ is β-projection of α if and only if (1) β is prefix
of γ, and (2) there exists no longer subsequence of α such
that β is its prefix. For example, if α = 〈a a b c d c d a b〉
and β = 〈a a b c〉, then β-projection of α is γ = 〈d c d a b〉.

As an example, given the sequence database S in Table 3 and
a user-specified min sup = 2, the sequential patterns in S can be
mined by the PrefixSpan method using the following three steps:
Step 1: Find 1-pattern sequences.

Scan the database S once to discover all frequent items in

the sequences. These are 〈PE〉:5, 〈WO〉:5, 〈TR〉:5, 〈BK〉:2 and
〈TS〉:2, where 〈pattern〉:count is the pair of the pattern and
support count.

Step 2: Distribute the search space.
The projected database can be distributed into the follow-

ing five subsets according to the five prefixes which resulted
from Step 1: (1) those having prefix 〈PE〉;...; and (5) those
having prefix 〈TS〉.

Step 3: Find the subsets of sequential patterns.
These can be mined by constructing the corresponding pro-

jected databases and exploring each recursively.

3. Coordinated Botnet Attacks

3.1 Definition
Botnets are able to mount coordinated attacks by multiple

servers to infect a victim with a set of malwares [7]. As we
have mentioned in Introduction, Table 5 shows sequential infec-
tions observed the CCC DATAset 2009, in terms of data pack-
ets captured by 94 honeypots [5], in which a honeypot is in-
fected by the three malwares PE_VIRUT.AV, TROJ_BUZUS.AGB
and WORM_SWTYMLAI.CD scheduled in the same order. In Table 5,
we note that PE_VIRUT.AV remains highly ranked for 3 years and
that PE_VIRUT.AV is the malware that starts the coordinated at-
tacks. In addition, the PE family is the most common, although
the number of infections decreases over the three years.

The series of malware download is called coordinated attack,
as follows.

Definition 3.1 A coordinated botnet attack (or a coordinated
attack) is an series of malware infections to a victim host from
multiple server controlled by a botnet.

We simply call a botnet without regards to size or organization
that the attacker used for control some servers to deliver malware
to victim.

3.2 Evidence of Coordinated Attack
Any attack from botnet can be classified as the coordinated at-

tack. However, the opposite, i.e., series of malware download
is not always made by botnet. The observed sequence may be
possible but not efficient to prove the set of malware are deliv-
ered under control of the same attacker. To the sake of argument,
we show a hypothesis testing. Suppose that the set of malware
downloads were random.

According to the frequencies of malware downloading events
in Table 4, the probability of given malware to be infected is

Pr[PE VIRUT.AV] =
frequency

total downloads
=

700
2357

= 0.30.

Similarly, Pr[ TROJ BUZUS.AGB ] = 0.06 and Pr[
WORM SWTYMLAI.CD ] = 0.08. Under our hypothesis,
a probability that three events happen in this order is
0.30 · 0.06 · 0.08 = 0.00144. The probability of the se-
quence to be observed for three times a month is 2.70 × 10−9,
which is too small. Therefore, we reject the hypothesis of
random events and hence claim the sequence of malware was
made by servers under a control of the same attacker, referred as
coordinated botnet attacks.
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Table 5 Examples of coordinated malware attacks.

Time Source IP address Dst Port Protocol MW
0:02:11 124.86.***.111 47556 TCP PE_VIRUT.AV

0:03:48 67.215.*.206 80 TCP TROJ_BUZUS.AGB

0:03:48 72.10.***.195 80 TCP WORM_SWTYMLAI.CD

0:36:46 124.86.**.109 33258 TCP PE_VIRUT.AV

0:36:52 72.10.***.195 80 TCP WORM_SWTYMLAI.CD

0:36:52 67.215.*.206 80 TCP TROJ_BUZUS.AGB

0:46:56 124.86.**.109 33258 TCP PE_VIRUT.AV

0:48:52 67.215.*.206 80 TCP TROJ_BUZUS.AGB

0:48:52 72.10.***.195 80 TCP WORM_SWTYMLAI.CD

Table 4 Top 5 malware observed in March 2009.

No. Malware Freq. Probability
1 PE_VIRUT.AV 700 0.296988
2 UNKNOWN 240 0.101824
3 WORM_SWTYMLAI.CD 198 0.084005
4 BKDR_POEBOT.GN 166 0.070429
5 TROJ_BUZUS.AGB 146 0.061943

.

.

.

68 BKDR_RBOT.PA 1 0.000424
Sum 2357 1

3.3 Complexity in Detecting Coordinated Attack
Detecting coordinated attack is not easy. Let n be a number of

distinct malware in a dataset. There are
(

n
2

)
pairs of malware to be

2-item association rules. For a pair (A, B), there are two A ⇒ B

and B⇒ A rules. Hence, the total number of 2-item rules is
(

n
2

)
·2.

If we are given a k-item set, defined as Ck in Algorithm 1, there
are 2k − 2 variations, where 2 corresponds ∅ ⇒ Ck and Ck ⇒ ∅.
Consequently, taking summation for all item sets, we have the
total number of association rules as

n∑
k=2

(
n
k

)
· (2k − 2) (1)

In Table 4, we find n = 68 kinds of malware
for one month and the total of possible rules is
278128389443103215446927070580050 = 2.7 × 1032, which is
not tractable in space or in time. Therefore, we need an efficient
algorithm to detect association rules.

3.4 Experimental Data
The CCC DATAset contains the access logs for attacks over

the three years from November 1, 2007 to April 30, 2010, shown
in Table 6. The 94 independent honeypots were used to observe
malware download performed in the Japanese tier-1 backbone un-
der the coordination of the CCC. The honeypots are rebooted
periodically, at 20-minute intervals. We call these time intervals
time slots throughout this paper. A day’s observation yields 72
time slots. A transaction is the list of malware names that are
downloaded in one time slot. Similarly, the malware download-
ing logs are divided in terms of time slots.

The malware names in CCC Dataset were exactly identified
based on the latest signature file maintained by Trend Micro [5].
The signature file were incrementally updated while the honey-
pots were observing network. The malware failed to be identified
is specified explicitly as “UNKNOWN.”

Table 7 summaries the specific environment to collect malware
downloading events.

Table 6 CCC DATAset statistics.

CCC DATAset # of duration # of records
honeypot

2009 94 2007/11/1 – 2008/4/30 2,942,221
2010 92 2008/5/1 – 2009/4/30 1,162,093
2011 72 2010/5/1 – 2011/1/31 158,734

Table 7 Specification of environment to collect malware.

attribute value
guest OS Windows 2000, Windows XP SP1
signature Trend Micro
attribute time, source/destination IP address, source/destination

port, hash value of malware, malware name, file name
format CSV

4. Analysis

4.1 Experiment
4.1.1 Analysis Objectives

Our analysis is motivated by the following questions;
( 1 ) What combinations of malware are frequently used for the

botnet coordinated attack?
The botnet may use the set of malware to perform the coor-
dinated attack. If we learn the frequent pattern, we can iden-
tify the bottleneck of the patterns and use the information to
prevent the further attack.

( 2 ) How uniformly are the coordinately attacks performed?
If the botnet performed the attack to randomly chosen ad-
dress, all our honeypots observed the attack uniformly. If
not, we may study botnet’s destination selection strategy and
can use it to prevent further attack.

( 3 ) How long does the botnet perform a single coordinated at-
tack?
The botnet are supposed to be quite adaptive against the de-
fense and frequently change their active servers. If we find
the duration of a single particular coordinated attack, the fun-
damental statistics of botnet attack can be clarified.

( 4 ) How accurate does the data-mining algorithm detect the co-
ordinate attack?
Both of Apriori and PrefixSpan are useful algorithm but we
are not sure which is better for our purpose.

In order to answer the above questions, we have the following
experiments. In the parenthesis, we specify the corresponding
subsequent sections for showing the experimental results.
( 1 ) Observed the malware download using honeypots and use

the signature to detect the corresponding malware names
(CCC Dataset).

( 2 ) Apply Apriori to the log file of malware names and have the
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association rules of malware (Section 4.2).
( 3 ) Apply Apriori to the log file of downloading honeypot IDs

and have the association rules of honeypot (Section 4.3).
( 4 ) Use the top association rules of malware to find the duration

of attack (Section 4.4).
( 5 ) Apply PrefixSpan to the log file of malware names and com-

pare with the Apriori in terms of the accuracy (Section 4.5).
4.1.2 Input Data

Table 8 shows the sample of input file to Step 2 (Apriori) and 5
(PrefixSpan). The detected malware names are listed in the order
of detection in each of time slots. These names are used as item
set in data-mining algorithm described in Section 2.

We observe some names labeled as UNKNOWN, which means
fault of identification from the signature database. Since the data-
mining process discloses the most frequent items only, we can
omit these fault of identification without depending on our re-
sults.
4.1.3 Parameter Optimization

Before performs data-mining algorithms, we need to specify
parameters of mining, i.e., min sup, min conf. The choice of
these parameters are heuristically fixed and tuned, as designed
in these algorithms. If the min sup is too high, no frequent items
sets is given. Then, we pick a lower value for min sup and try
again. This seems to be inefficiently, but in fact the results are
obtained very quickly and hence we can do this very practically.

4.2 Association Rules for Malware
Coordinated malicious servers send the same type of malware

to a single target host. Table 9 shows an example of malware
sequences observed for each time slot, showing 58 infected slots
out of 145 slots. The most frequent infection involves 11 distinct

Table 8 Sample input data transformed from CCC dataset.

time slot malware names
0 TROJ_SYSTEMHI.BQ

1 KDR_AGENT.ANHZ UNKNOWN TROJ_SYSTEMHI.BQ UNKNOWN

2 PE_BOBAX.AH

3 PE_BOBAX.AH UNKNOWN BKDR_AGENT.ANHZ

.

.

.
.
.
.

15323 PE_VIRUT.AV TROJ_IRCBRUTE.BW WORM_AUTORUN.CZU

Table 9 Sequences of malware observed in a time slot.

Time Slot Sequence of Malware
0 PE_VIRUT.AV TROJ_BUZUS.AGB WORM_SWTYMLAI.CD

2 WORM_ALLAPLE.IK PE_VIRUT.AV WORM_SWTYMLAI.CD TROJ_BUZUS.AGB

3 PE_VIRUT.AV TROJ_BUZUS.AGB WORM_SWTYMLAI.CD PE_VIRUT.AV

14 BKDR_POEBOT.GN TROJ_BUZUS.AGB WORM_SWTYMLAI.CD

15 BKDR_MYBOT.AH PE_VIRUT.AV

.

.

.
141 PE_BOBAX.AK WORM_SWTYMLAI.CD WORM_AUTORUN.CZU WORM_IRCBOT.CHZ

Table 10 Association rules for malware infection.

Rule. Antecedent Consequent Supp Conf
1 TROJ_BUZUS.AGB ⇒ WORM_SWTYMLAI.CD 41.4 100
2 WORM_SWTYMLAI.CD ⇒ TROJ_BUZUS.AGB 41.4 88.9
3 TROJ_BUZUS.AGB BKDR_POEBOT.GN ⇒ WORM_SWTYMLAI.CD 10.3 100
4 WORM_SWTYMLAI.CD BKDR_POEBOT.GN ⇒ TROJ_BUZUS.AGB 10.3 100
5 PE_VIRUT.AV TROJ_BUZUS.AGB ⇒ WORM_SWTYMLAI.CD 29.3 100
6 PE_VIRUT.AV WORM_SWTYMLAI.CD ⇒ TROJ_BUZUS.AGB 29.3 100
* PE VIRUT.AV ⇒ WORM SWTYMLAI.CD TROJ BUZUS.AGB N/A N/A

malware names in a single slot.
We applied the Apriori algorithm to the dataset of malware

shown in Table 9 and successfully discovered significant associa-
tion rules for the malware shown in Table 10. This result identi-
fies all association rules with support above 10% and confidence
above 80%.

We are interested in whether the pattern PE_VIRUT.AV ⇒
TROJ_BUZUS.AGB, WORM_SWTYMLAI.CD shown in Table 10
is automatically detected or not. Unfortunately, Table 10
does not contain exactly this rule, but has several simi-
lar association rules, such as Rule No.5: PE_VIRUT.AV,
TROJ_BUZUS.AGB ⇒ WORM_SWTYMLAI.CD and Rule No.6:
PE_VIRUT.AV, WORM_SWTYMLAI.CD⇒ TROJ_BUZUS.AGB. From
the observations in Table 10, we found a significant correla-
tion between TROJ_BUZUS.AGB and WORM_SWTYMLAI.CD in Rule
Nos. 1, 2 and 3.

4.3 Dependency on Honeypots
We are interested in the degree to which extracted association

rules depend on particular honeypots. We show the numbers of
honeypots that have observed the top 10 association rules of mal-
ware in Table 11.

We investigated 94 honeypot IDs during March 13, 2009. For
example, we found that 36 of the 94 honeypots observed common
Rule No.1, suppressing differences of support and confidence.

Figure 2 shows the number of association rules in terms of
the number of distinct honeypots that observe the rule, denoted
by k. The vertical axis shows the number of distinct associ-
ation rules N(k), where k honeypots detect the rule. We note
that the most common association rules using TROJ_BUZUS.AGB
and WORM_SWTYMLAI.CD are observed by 36 honeypots. These
widely observed honeypots can be considered as those being used
for coordinated attacks. We also note that only specific malware
is used to coordinate the attacks.

4.4 Lifecycle of Association Rules for Malware
The duration of coordinated attacks is short. Figure 3 shows

the distribution of activity for the top three association rules ex-
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Table 11 Number of honeypots having association rules for malware on March 13, 2009.

No. Antecedent Consequent Honeypots
1 TROJ_BUZUS.AGB ⇒ WORM_SWTYMLAI.CD 36
2 WORM_SWTYMLAI.CD ⇒ TROJ_BUZUS.AGB 36
3 TROJ_BUZUS.AGB BKDR_VANBOT.AHH ⇒ WORM_SWTYMLAI.CD 12
4 WORM_SWTYMLAI.CD BKDR_VANBOT.AHH ⇒ TROJ_BUZUS.AGB 12
5 TROJ_DLOADR.CBK ⇒ UNKNOWN 8
6 TROJ_BUZUS.AGB PE_VIRUT.AV ⇒ WORM_SWTYMLAI.CD 7
7 WORM_SWTYMLAI.CD PE_VIRUT.AV ⇒ TROJ_BUZUS.AGB 7
8 PE_VIRUT.AV TROJ_BUZUS.AGB ⇒ WORM_SWTYMLAI.CD 6
9 TROJ_AGENT.ANDF ⇒ UNKNOWN 6
10 PE_VIRUT.AV WORM_SWTYMLAI.CD ⇒ TROJ_BUZUS.AGB 6

Fig. 2 Number of association rules in terms of the number of honeypots
observing the rules.

Fig. 3 Distribution of activity for the top three rules (omitting
UNKNOWN).

cept for UNKNOWN, defined by:
( 1 ) BKDR_VANBOT.HI⇒ BKDR_SDBOT.BU
( 2 ) BKDR_POEBOT.AHP⇒ TROJ_QHOST.WT
( 3 ) TSPY_KOLABC.CH⇒ WORM_SWTYMLAI.CD.
The horizontal axis shows the date of observation, and the vertical
axis shows the number of slots in which the top three association
rules were observed. The average duration for three rules is 26.3
days. The reason why the duration is short is that a short period
of coordinated attacks is hard to detect. Moreover, the coordi-
nated pattern is constantly renewed every time new malware is
developed.

Fig. 4 Average length of coordinated attacks per rule.

4.5 Changes in Coordinated Attacks
We investigated the number of types of malware used to per-

form coordinated attacks. For this purpose, we applied the Pre-
fixSpan algorithm, which can distinguish patterns with different
infection ordering, aiming to extract the coordinated infection
patterns for all honeypots.

Figure 4 illustrates the change in the average number of types
of malware used in attacks. The vertical axis shows the length of
attack per rule, i.e., the number of distinct malware consisting of
coordinated attack, with regard to the date of observation. The
number of types of malware increases, despite the decrease in the
overall number of attacks. We stress that this shows that coor-
dinated attacks are becoming more complex and advanced than
previously. For example, the malware downloaded with HTTP
GET, which was used by two malwares in 2008 and 2009, was
observed five times in malware in 2010. We therefore conclude
that coordinated attacks are clearly complicated.

5. The Hybrid Approach using Apriori and
PrefixSpan

5.1 Comparison between Apriori and PrefixSpan
We evaluated the two automated algorithms, Apriori and Pre-

fixSpan, in terms of their accuracy in detecting coordinated mal-
ware attacks.

We show the sample output of Apriori and PrefixSpan for the
log data of February 4th, 2009, in Figs. 5 and 6, respectively. In
Apriori, the recode is of the form (|X|, confidence) *1 and mini-
mum support is 5 and minimum confidence 80 % was used. In
PrefixSpan, the support is indicated at the end of line. We inves-
tigate the underlined rules for both experimental results and show

*1 The support is derived from |X| by |X|· confidence/N = |X ∩ Y |/N.
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PE_VIRUT.AV, BKDR_POEBOT.GN ⇒ TSPY_KOLABC.CH (8, 87.5)
PE_VIRUT.AV, BKDR_POEBOT.GN ⇒ WORM_SWTYMLAI.CD (8, 100.0)
PE_VIRUT.AV, WORM_SWTYMLAI.CD ⇒ BKDR_POEBOT.GN (10, 80.0)
PE_VIRUT.AV, TSPY_KOLABC.CH ⇒ WORM_SWTYMLAI.CD (9, 100.0)
PE_VIRUT.AV, WORM_SWTYMLAI.CD ⇒ TSPY_KOLABC.CH (10, 90.0)
BKDR_POEBOT.GN, TSPY_KOLABC.CH ⇒ WORM_SWTYMLAI.CD (14, 100.0)
BKDR_POEBOT.GN, WORM_SWTYMLAI.CD ⇒ TSPY_KOLABC.CH (16, 87.5)
TSPY_KOLABC.CH, WORM_SWTYMLAI.CD ⇒ BKDR_POEBOT.GN (17, 82.4)
PE_VIRUT.AV, BKDR_POEBOT.GN, TSPY_KOLABC.CH ⇒ WORM_SWTYMLAI.CD (7, 100.0)
PE_VIRUT.AV, BKDR_POEBOT.GN, WORM_SWTYMLAI.CD ⇒ TSPY_KOLABC.CH (8, 87.5)

Fig. 5 The sample output of Apriori.

Table 12 Comparison between Apriori and PrefixSpan.

Date
Apriori PrefixSpan

Rule Slots True [Slots] Rule Ptns True [Ptns]
2009/02/03 WORM, BKDR⇒ TSPY 4 4 TSPY⇒ WORM⇒ TKDR 3 9
2009/02/04 BKDR, TSPY⇒ WORM 14 14 TSPY⇒ BKDR⇒ WORM 3 29

TSPY⇒ WORM⇒ BKDR 7
WORM⇒ BKDR⇒ TSPY 4
WORM⇒ TSPY⇒ BKDR 12

.

.

.

2009/02/28 BKDR, TSPY⇒ WORM 7 7 TSPY⇒ WORM⇒ BKDR 5 14
BKDR, WORM⇒ TSPY 7 WORM⇒ TSPY⇒ BKDR 3

Sum 464 315 482 575
false positive (464 > 315) false negative (482 < 575)

PE_VIRUT.AV TSPY_KOLABC.CH WORM_SWTYMLAI.CD 4
TSPY_KOLABC.CH BKDR_POEBOT.GN TSPY_KOLABC.CH 4

WORM_SWTYMLAI.CD BKDR_POEBOT.GN TSPY_KOLABC.CH 4
WORM_SWTYMLAI.CD TSPY_KOLABC.CH PE_VIRUT.AV 4
WORM_SWTYMLAI.CD TSPY_KOLABC.CH WORM_SWTYMLAI.CD 4
WORM_SWTYMLAI.CD WORM_SWTYMLAI.CD BKDR_POEBOT.GN 5
PE_VIRUT.AV WORM_SWTYMLAI.CD TSPY_KOLABC.CH 6
PE_VIRUT.AV TSPY_KOLABC.CH BKDR_POEBOT.GN 7
PE_VIRUT.AV WORM_SWTYMLAI.CD BKDR_POEBOT.GN 7
TSPY_KOLABC.CH WORM_SWTYMLAI.CD BKDR_POEBOT.GN 7

WORM_SWTYMLAI.CD TSPY_KOLABC.CH BKDR_POEBOT.GN 12

Fig. 6 The sample output of PrefixSpan.

the comparison in Table 12.
Our target coordinated attack to be detected by these al-

gorithms was the sequence of malware: TSPY_KOLABC.CH,
WORM_SWTYMLAI.CD and BKDR_POEBOT.GN that had been re-
ported by Trend Micro [8]. The accuracy of Apriori is given as the
frequency of detected time slots, indicated in columns labeled as
“Slots,” as a proportion of the true time slots identified by man-
ual investigation. The accuracy of PrefixSpan is defined as the
proportion of detected coordinated-attack patterns within the true
patterns, and labeled as “Ptns” in the table.

For example, Apriori extracts all four of the coordinated at-
tacks on 3rd February. PrefixSpan detects three correct patterns,
missing six patterns out of nine, on the same day. On 28th Febru-
ary, Apriori made false detections in seven slots. The reason for
these false positives is that Apriori considers all possible com-
binations of malware, without observing the order of detection.
On the other hand, PrefixSpan had a relatively low false-positive
rate compared with Apriori, although it had false negatives. For
example, on 4th February, (number of true patterns) − (sum of
detected patterns) = 29− (3+7+4+12) = 3, which implies there
were 3 missing patterns at too low a frequency.

Consequently, Apriori is good at detecting those time slots
when coordinated attacks may have occurred, whereas PrefixS-

Table 13 Accuracy in Apriori.

Coordinated Non-Coordinated Sum
Extracted 315 149 464

Non-Extracted 0 N/A N/A
Sum 315 149 464

Table 14 Accuracy in PrefixSpan.

Coordinated Non-Coordinated Sum
Extracted 482 0 482

Non-Extracted 93 N/A 93
Sum 575 N/A 575

Table 15 Recall and precision.

Apriori PrefixSpan
Recall 315/315 = 1 482/575 = 0.838

Precision 315/464 = 0.678 482/482 = 1

pan is useful for detecting exact coordinated patterns of malware.
We can combine these two automated approaches for the accurate
detection of attacks.

5.2 Accuracy in Detection
Our comprehensive investigation of the CCC DATAset is sum-

marized in Tables 13 and 14, with respect to the accuracy of Apri-
ori and PrefixSpan, respectively. Note that Apriori aims to detect
coordinated time slots and PrefixSpan detects sequence patterns
in malware. The tables shows that Apriori has 149 false positives
(slots) out of 464 and no false negatives, whereas PrefixSpan has
no false positives (patterns) but fails to detect 93 patterns out of
575. To summarize this, we use two criteria, precision, defined
as the fraction of correctly detected slots (patterns) in all detected
slots, and recall, defined as the fraction of correctly detected slots
(patterns) in all slots with attacks. These are shown in Table 15.
Apriori achieves high recall but with false positives. PrefixSpan
can be tuned, using an appropriate minimum support bound, to
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Table 16 Accuracy of Hybrid approach for three datasets.

DATAset Date Accuracy Apriori PrefixSpan Hybrid

2009 2009/02
Recall 315/315 = 1 482/575 = 0.838 545/575 = 0.947

Precision 315/464 = 0.678 482/482 = 1 482/482 = 1

2010 2009/12
Recall 251/251 = 1 535/592 = 0.903 575/592 = 0.971

Precision 251/395 = 0.639 535/535 = 1 575/575 = 1

2011 2010/06
Recall 51/51 = 1 42/94 = 0.447 74/94 = 0.787

Precision 51/114 = 0.447 42/42 = 1 74/74 = 1

Average
Recall 1 0.729 0.902

Precision 0.588 1 1

Std. Deviation
Recall 0 0.201 0.082

Precision 0.101 0 0

Algorithm 2 Hybrid with Apriori and PrefixSpan
input: dataset T

Step 1. Apply Apriori algorithm to T and get frequent item sets L2, . . . , Lk.

Step 2. Apply PrefixSpan algorithm to L2, . . . , Lk with a certain minimal

support.

Output. All significant association rules, corresponding to coordinated at-

tacks.

filter out useless patterns.

5.3 A Hybrid Approach with Apriori and PrefixSpan
From our observation, we come up with idea of hybridizing

Apriori and PrefixSpan. We first apply Apriori to detect time slots
containing potential coordinated attacks because we have no a
priori knowledge about likely correlations between malware. Af-
ter Apriori has identified possible slots, we apply the PrefixSpan
algorithm to improve the accuracy. For example, on February 4th,
Apriori and PrefixSpan detected nine patterns and 32 patterns *2,
respectively. However, after Apriori detected three major mal-
wares, TSPY, WORM and BKDR, the second filter of PrefixSpan re-
duced the number of false alerts from 32 to four patterns. The
final four patterns that begin with TSPY and WORM are listed in Ta-
ble 12, and labeled as “PrefixSpan.” The results suggest that these
four patterns are the most likely sequences of malware used in a
botnet. For simplicity, we will concentrate on the three malwares
of interest in this example. In practice, we would deal with many
unrelated malwares observed in the same period of time.

We summarize our hybrid approach with Algorithm 2. The
proposed scheme is a simple cascade of two independent schemes
and hence contains some redundant procedures such as finding
frequent item sets called by both schemes. If we skip the com-
mon procedures, the performance of the scheme can be improved.
We leave it as one of future study.

The hybrid approach improves detection accuracy as shown in
Table 16, where we test the hybrid approach for three datasets,
CCC DATAset 2009, 2010, and 2011 [5], [6] in terms of recall and
precision. With hybrid approach, the recall of PrefixSpan is im-
proved from 0.838 to 0.947 in CCC DATAset 2009, while the pre-
cision of Apriori increases from 0.678 to 1.0. Similar improve-
ments are observed in DATAset 2010 and 2011. The average re-
call is 0.902 with confidence interval of 95 % of ±2σ = ±0.164,
which follows 0.902 − 0.164 = 0.738 > 0.729. The average
precision always greater than that of Apriori with significant dif-
ference. Hence, we conclude that the hybrid approach improves

*2 The detected 9 and 32 patterns are not shown in Table 12.

Fig. 7 Processing time for Apriori with regard to data size.

accuracy of Apriori and PrefixSpan with high confidence.
Note that the recall of Apriori, 1, is better than that of hybrid

scheme, 0.902 in Table 16. The hybrid does not always improve
both recall and precision. However, the improvement from Pre-
fixSpan, which has recall of 0.729, must be more significant be-
cause the hybrid is free from false rules. Further improvement is
one of our future studies.

5.4 Limitation of Proposed Method in terms of Performance
The scalability of the proposed method depends on that of two

primitive data mining algorithm.
Figure 7 shows the processing time of Apriori with regards

to the input data size, varying duration of observation in CCC
Dataset 2009 from 3 month to 12 month, corresponding to
6.7 MB to 27.1 MB in size. It demonstrates the Apriori runs in
linear time with input size. The internal analysis reveals the read-
ing file is the bottleneck of performance as far as the meaning-
ful support and confidence are given. Although hybrid approach
takes double in time, the total time to detect all coordinated at-
tacks is expected to be less than 10 seconds. If we require the
analysis to be done within in a minute, we say the limitation of
application is about 10 years. Therefore, we conclude that the
proposed method scales well.

5.5 Case Study in Proposed Scheme
We illustrate the advantage of our proposed method with case

studies.
( 1 ) Library with Wi-Fi network [11]. The Rotterdam Library,

Netherland, has about 1,000 visitors per day, mostly stu-
dents, connect their devices to the library’s free Wi-Fi net-
work, which recurs more than 4,000 pieces of malware in-
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Table 17 Comparison of detection studies using data-mining algorithms.

schemes Ref. [13] Ref. [14] Ref. [16] Ref. [15] Ref. [19] Ref. [18] Proposed
target malware malware malware malware network network network
items read/write APIs sequence kernel-events APIs IP, port IP, TCP IP, Malware name

dataset synthesized 30,000 samples samples samples CCC Dataset backbone CCC Dataset
mining AprioriAll OOA-FP MAFIA and PrefixSpan* N/A Apriori and Apriori and

PrefixSpan KL PrefixSpan

fection on the public access terminals. Most existing anti-
virus, anti-spam, IDP did not work against advanced persis-
tent threats with many kinds of malware.
Our proposed scheme is potentially used to detect coordi-
nated attacks and hence altering any outbound packets con-
trolled by infected hosts. The list of malware, Table 11,
could help for identifying significant malware to be detected.

( 2 ) University Network [12]. The university of Baltimore ex-
pands significant manual resources to keep up with black-
listing IP addresses and clean up malware infection. Despite
ongoing education efforts, users would continue to respond
phishing and visit hostile website.
Our scheme allows to automate the blacklisting processes
with hybrid two data mining algorithm. The blacklisted ad-
dress should be marked as malicious for an average duration,
such as Fig. 4.

5.6 Related Works
There are many studies for detection technology using the data-

mining algorithms including Apriori and PrefixSpan. These stud-
ies are classified into two categories; malware detection and in-
trusion detection.

In the first category of malware detection, the algorithm can
be used to extract the typical sequence of APIs captures, mem-
ory/storage accesses invoked by a given malware. In Ref. [13],
Hu and Panda proposed a data-mining algorithm for intrusion
detection. They had experiment on synthetic database for ma-
licious transaction, consisting of read and write sequences. They
used the AprioriAll for generating sequential patterns. Ye, Wang,
Li and Ye had developed the malware detection system, called,
IMDS, in Ref. [14]. The IMDS analyzes Windows API execu-
tion sequences called by PE files and uses an object-oriented as-
sociation mining algorithm, OOA-FP, instead by Apriori. With
about 30,000 samples of malware, they evaluated the accuracy
of the proposed system and showed the comparison to the well-
known data-mining algorithms. LaRosa, Xiong, and Mandelberg
presented a framework for mining kernel trace data to detect in-
teresting inter-process communication patterns and runtime ex-
ecution pattern in operating system trace logs in Ref. [16]. They
used the Linux Trace Toolkit for collecting the kernel-events, e.g.,
open, alloc, syscall, for file system, and memory. They combined
the frequent item-sets algorithm, MAFIA [17], and the sequence
mining algorithm, similar to our proposed scheme. In Ref. [15],
Wang, Tan, Pan and Xi proposed a behavior-based detection sys-
tem in which the PrefixSpan* algorithm mines association rules
from malicious code samples. They shows some lengh-2 patters
from malware including 7 virus, 7 Trojans, 6 worms. They com-
bined the expert system with the pattern mining algorithm.

The second category is the network-based intrusion detec-

tion. Automated approach is highly useful here since the vol-
umes of flows observed from networks are too large to inves-
tigate by human. In Ref. [18], Brauckhoff, Dimitropoulos and
Wagner proposed an anomaly detection algorithm using meta-
data based on the histogram of features, e.g., protocol, IP ad-
dress, port, TCP flags, flow size, packet size, flow duration. Cho-
sen significant features, they used the Apriori algorithm to de-
tect the frequent item sets and then tested the Kullback-Leibler
distance for anomaly detection. In Ref. [19], Takemori, Fuji-
naga, Sayama, and Nishigaki had developed a system, named as
“Botnet visualizer” for identifying link between the C&C servers
and the compromised hosts. For evaluation, they used the CCC
Dataset [5], but did not use any data-mining algorithm for their
purpose. Other studies based on the CCC Dataset can be found in
Refs. [3], [4], [7], [9].

5.7 Comparison between the Proposed schema and the Re-
lated Works

Table 17 shows the comparison between the proposed scheme
and the related works in terms of target of detection, the items to
be mined, and the algorithms used to analyze.

6. Conclusions

We have reported on the characteristics and evolution of coor-
dinated attacks, using data from the CCC DATAset for the past
three years. Despite the number of coordinated attacks having
decreased, the number of distinct malwares used in coordinated
attacks has increased.

Our experiment successfully extracts the particular association
rules of malware frequently observed by multiple honeypots. The
malware servers are widely distributed in the internet and there is
few servers used to send malware to many target hosts. The du-
ration of coordinated attacks were very short. This implies that
the coordinated attacks are controlled by a botmaster that regu-
lates the ratio of attacks and stops the attack before it is detected.
The data-mining algorithms, Apriori and PrefixSpan, are useful
to detect the features of botnet attacks and to predict the future
events. The Apriori has 149 false positive out of 464 slots
(32.1%) and no false negative, whereas PrefixSpan has no false
positives but fails to detect 93 patterns out of 575 (16.2%). Hence,
combining these two algorithms, i.e., after Apriori has identified
possible slots, we apply the PrefixSpan to improve the accuracy.
The automated combination of Apriori and PrefixSpan is one of
our future studies.
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