IPSJ SIG Technical Report

Vol.2013-MBL-67 No.12
Vol.2013-CDS-8 No.12
2013/9/13

Study of Compression Techniques for Congestion Control
in Wireless Networks

Lee Cavy KHO!®

Yasuo TAN!-P)

AzMaN OsmaN LIM !9

Abstract: Congestion definitely occurs when the offered traffic load exceeds available capacity at any point in the
wireless networks. To reduce congestion in the wireless networks, a compression technique can be adopted as one
of the viable solution. In this paper, we study the well-known lossless compression techniques and analyse their per-
formance of the compression ratio. This paper also discusses the advantages and disadvantages of the compression

techniques in the domain of congested wireless networks.

Keywords: congestion control, compression technique, compression ratio

1. Introduction

Congestion occurs when the resource demand exceeds the net-
work capacity and the packets are lost due to too much queu-
ing in the network. During congestion, the network throughput
may drop to zero and the path delay may become very high [1].
The typical effects of congestion in networks are queuing delays,
packet losses, blocked new connections, etc. causing the quality
of service of the network to deteriorate; especially in wireless net-
works. There are numerous of congestion control for wired and
wireless networks being introduced. Most of the congestion con-
trol include the algorithms of slow start, congestion avoidance,
fast retransmit, and fast recovery to form a basic framework of
TCP flow and congestion control. These four congestion con-
trol algorithms are executed at the source end and accomplish the
congestion control through adjusting the parameters such as the
congestion window (CWND), round trip time (RTT), retransmis-
sion timeout (RTO), the slow start threshold (ssthresh), etc. In
spite of that, compression techniques can be adopted as one of
the viable solution to reduce congestion, particularly in wireless
networks.

With the growing coverage of wireless networks and the de-
velopment of wireless technologies, the users are increasing ex-
ponentially and result to the limited wireless network bandwidth
and easily congested networks. Compared to wired networks,
wireless networks have a long propagation delay and higher bit
error rate; therefore it is more difficult to maintain the quality of
service. Through the help of compression techniques, the capac-
ity of a communication channel can be increased by transmitting
smaller data packets size and shorted transmission time. Com-

School of Information Science, Japan Advanced Institute Science and
Technology (JAIST),1-1 Asahidai, Nomi City, Ishikawa, 923-1211,
Japan

¥ 51120203 @jaist.ac.jp

Y ytan@jaist.ac.jp

9 aolim@jaist.ac.jp

© 2013 Information Processing Society of Japan

pression techniques reduce the data packet size by removing re-
dundant information in the data that should be transmitted.

There are numerous of compression techniques for the kind of
application being introduced. For instance, the image compres-
sion such as GIF uses the Lempel-Ziv-Welch coding, BMP uses
the run-length coding, JPEG uses the lossy discrete cosine trans-
form, then Huffman or arithmetic coding, etc. In this paper, we
aim to determine which compression techniques are more suits
to the congestion control in wireless networks. Therefore, we
study some well-known lossless compression techniques such as
Run length coding (RLE), Huffman coding, arithmetic coding,
and Lempel-Ziv-Welch (LZW) coding. Their performances of
the compression ratio are also analyzed.

The main contribution of this research is to provide a com-
parative study of the four well-known lossless compression tech-
niques: RLE, Huffman coding, arithmetic coding and LZW cod-
ing. This study enables us to understand the basic characteristics,
target domain, complexity level, and features of the four lossless
compression techniques. The advantages and disadvantages of
those compression techniques in the domain of congested wire-
less networks are also discussed.

The rest of this paper is organized as follows. Section 2 is de-
voted to the related works of compression techniques and Section
3 discusses the taxonomy of compression techniques. The loss-
less compression technique of RLE, Huffman coding, arithmetic
coding, and LZW coding are deeply discussed in the Section 4.
The results and discussion are shown in Section 5 and conclude
the paper in Section 6.

2. Related Works

There are a number of studies that have addressed the com-
pression techniques in different kind of application. The most
common applications are data compression, image compression,
voice compression, etc. M. A. Laham al. et. had presented a com-
parative study between various algorithms of data compression

IPSJ SIG Technical Report

techniques in 2007 [2]. In the paper, the compression techniques
such as RLE, Huffman, LZ 77, and LZW are briefly discussed.
Then, the author compared the compression ratio of LZW and
Huffman for the file of .DOC, .BMP, .JPG, and .GIF. Based on
the results, LZW performed badly in image data compression,
especially .GIF and .JPG file. LZW enlarges the file size to max-
imum 40% of the input file size, whereas Huffman enlarge 5% of
the input file size. Moreover, LZW performed as well as Huff-
man in text format of .DOC file. Both techniques achieve 80% of
compress ratio in text file. Unlikely, the results of compression
ratio for both techniques are inconsistent. Huffman sometime
performs better than LZW or the opposite way. We improve the
above paper by determining the percentage of average maximum
redundancy in a file before compress, so that the relationship of
redundancy and compression ratio for compression techniques of
RLE, Huffman, arithmetic and LZW can be identified.

In addition, S. Shanmugasundaram al. et. in [3] had provided
a survey of text compression algorithms based on statistical and
dictionary. The author used a parameter metric of Bit Per Charac-
ter (BPC) to compare the performance of compression algorithms
in twelve different text files. The results showed that the average
BPC for RLE was around 8 bits, whereas Shannon Fano coding,
Huffman coding, Adaptive Huffman coding and arithmetic cod-
ing of BPC is between 5 to 6 bits. Although this parameter metric
showed the bits reduction per character among the different com-
pression techniques, it cannot present the overall performance of
the compression in term of complexity, time, efficiency, etc.

The others related compression survey such in [4-6] focus on
the techniques to compress the data rather than the compression
performance. They review different compression techniques by
giving a few examples of the way to compress and decompress
the source data.

3. Taxonomy of Compression Techniques

In a network flow, compression is performed at the source node
before the data packet is fed into the transmitter and decom-
presses the data packet at the receiver node when the signal has
detected. Thus, compression can be assumed as an end-to-end
functionality. Therefore, the main consideration of the conges-
tion control by applying compression in wireless networks will be
type of compression techniques, type of data to be compressed,
compression ratio, etc. Taxonomy is developed in this paper to
clarify the types of compression techniques that is existed. Fig. 1
shows a taxonomy of compression techniques.

In terms of data packet point of view, compression techniques
can be categorized into two parts: header compression and pay-
load compression. Typically, packet header contents critical in-
formation about routing the data to its destination. Thus, no infor-
mation loss can be accepted in the packet header. While in lossy
compression, some information loss is acceptable since the loss
information cannot be sensed by the human eye. For instance,
the human eye is more sensitive to subtle variations in luminance
than variation in color. JPEG image compression works in part
of rounding off less important information. In other words, lossy
compression technique cannot be used in header compression.

In the lossless compression techniques, the information after

© 2013 Information Processing Society of Japan

Vol.2013-MBL-67 No.12
Vol.2013-CDS-8 No.12
2013/9/13

Compression Techniques

Header Compression Payload
Compression
| | | [tosstess | [Cessy]
VJHC ROHC CRTP
SCPS
IPHC Predictive
Codecs
ScPs. scps. Transform Chroma

™ NP SF Arithmetic C°%€c® Subsampling

Fig.1 Taxonomy of compression techniques

decompress should not be changed whatsoever. There are few
examples of header compression techniques are shown in Fig.1.
Van Jacobsons header compression (VIHC) is one of the com-
pression techniques that improve the ratio of data to total bytes
transferred over a link. It reduces the normal 40 byte TCP/IP
packet headers to 3-4 bytes for the average case by sending the
differences in the header field that change.

Space Communication Protocol Specification (SCPS) was de-
signed to operate over any kind of space mission or infrastruc-
ture, regardless of complexity. SCPS redefines the network stack
from the network layer down with variations to known protocol
(i.e. SCPS-NP is used instead of IP). Modification to TCP is done
through the use of TCP extensions or option as specified in SCPS-
TP.

Robust Header Compression (ROHC) is a standardized method
to compress the IP, UDP, UDP-Lite, RTP and TCP header of In-
ternet packets. The main tasks of the ROHC compressor are 1)
compress the receiving RTP/ UDP/ IP / TCP into the appropri-
ate compressed packets and send them to the decompressed; 2)
deal with the feedback information from the decompression, and
finish the conversion of states and modes; 3) manage the CIDs
reasonably and effectively

IP header compression (IPHC) is improved and extended from
VJHC. It is mainly used for packet over TCP/IP and UCP/IP in
low speed links. IPHC uses different compression techniques
between TCP data streams and non-TCP streams. For the TCP
based data streams, the compression algorithms are same with
VIJHC. For the non-TCP based data streams, the packets arrive
randomly, thus the compressor cannot reduce the number of send-
ing bytes by differential encoding, so IPHC sends the full changed
fields without modification.

Real Time Protocol Compression (CRTP) is used to compress
the typical real time multimedia data packets. However, CRTP
also can compress the combination of RTP, UDP and IP header.
The 40 bytes of RTP/ UDP/ IP packets with UDP checksum can
be compressed to 4 bytes. CRTP can work well on the small RTT
link. In the long RTT, the compressor and decompressor cannot
achieve a good synchronization, which lead to a series of packet
loss. Moreover, CRTP takes up a lot of bandwidth when it sends
the complete header information to update the content. There-
fore, CRTP is not suitable for wireless networks.

In the payload compression, lossy and lossless compression
techniques are applicable depend on the type of data packets and
the user requirements. The lossy compression techniques can be
categorized into three types: transform codecs, predictive codecs,
and chroma subsampling. The transform codec compression is

IPSJ SIG Technical Report

generally used for JPEG images only. In the transform codecs,
the samples of picture are taken and chopped into smaller seg-
ments before transforming into a new image. Whereas in pre-
dictive codecs, previous and/or subsequent decoded data is used
to predict the compressed image frame. For the chroma subsam-
pling, it takes into account of the human eye perceives changes
to average or drop some chroma information while maintaining
Luma information.

In this paper, the study of lossless compression techniques will
be focused. Therefore, the well-known techniques such as Run
Length (RLE) coding, Huffman coding, arithmetic coding, and
LZW will be further discussed in the section 4.

4. Lossless Compression Techniques

The lossless compression can be categorized into three mod-
els: repetition, statistical, and dictionary. The repetition model
reduces the redundant information by encode the repeat symbols
into the length of string and symbols. The compression technique
that implements the repetition model is Run-Length (RLE) cod-
ing.

The statistical model is based on the symbols and the proba-
bility distribution of the source. The most common compression
techniques that use statistical model are Huffman coding, Shan-
non Fano (SF) coding, and arithmetic coding. Meanwhile, the
dictionary model relies upon the observation of correlations be-
tween the parts of data. It replaces those redundant by references
to a dictionary that contain the original. The following is the de-
tail of RLE, Huffman, arithmetic, and LZW coding.

4.1 Run-Length Coding (RLE)

RLE is created to encode the data with a string of repeated
symbols. For example, the text with kkkkhoho is the source to
compress; the first four letters are a run with length 4 since there
is repetition of symbol k, while the next 4 letters are non-run with
length 4. The RLE encoding algorithm compresses the runs of
the original file and keeps the non-runs from the compression
process. If the string of repeated symbols is large, the size of
the output data will be significantly reduced. In contrast, the size
of output data can be double the size of the input data during the
worst case. Therefore, RLE is usually used as a pre-compress for
other compression techniques such as Huffman and arithmetic.

4.2 Huffman Coding

Huffman coding is based on statistical method where the prob-
ability distribution of the character from the source is used to de-
velop the code words for symbols. The frequency of each symbol
is calculated to determine the probability distribution. The code
words are assigned based on the probabilities. Code words with
shorter length are for higher probabilities and code words with
longer length are for smaller probabilities. This property can be
achieved by constructing a binary tree where the symbols are act-
ing as leaves based on their probability and the paths are acting
as the code words. For example, the source of kkkkhoho;

If a block code of character is eight bits, then the source data
consist of 64 bits. By using Huffman coding, the code words for
k becomes one bits, h becomes two bits, and o becomes two bits.

© 2013 Information Processing Society of Japan

Vol.2013-MBL-67 No.12
Vol.2013-CDS-8 No.12
2013/9/13

Table 1 Huffman Coding Example

Element | Frequency | Huffman Code
k 4 1

h 2 01

0 2 00

Then, the source data can be compressed to 12 bits. However, the
table includes character and codes for each character need to be
transmitted together with the encoded output to the receiver for
decompression process. The size of this table depends on the file
being compressed, usually in range of 500 to 1200 bytes. By this,
the transmitted packet size can not be reduce much.

There are two types of Huffman coding algorithms: static Huff-
man algorithms and adaptive Huffman algorithms. Static Huff-
man algorithm compresses the source data by determining the fre-
quencies of character and generate a common tree for both com-
pression and decompression processes. Unlikely, the detail of the
tree need to be transmitted with the compressed file, which will
enlarge the data packet. For the adaptive Huffman algorithms,
there are two trees in the compression and decompression pro-
cesses. A tree is generated with the flag symbol in the beginning
and is updated as the next symbol is read.

4.3 Arithmetic Coding

In arithmetic coding, code words are used to represent a frac-
tion that denote as the entire source message. The occurrence
probability and cumulative probability are used to calculate the
set of code words representation. The cumulative probabilities
of a symbol range are calculated at the beginning of encoding
process. The source of character is read one by one and selects
the corresponding cumulative probability range of the character.
When the character is read, the corresponding sub range is se-
lected and divided into subsections according to the probabili-
ties of the symbol. This process is repeated until the end of the
message is encountered. A number from the final sub range of
cumulative probabilities is taken as the output of the encoding
process. This output will be a fraction that represents the en-
tire message. The information of the probability distribution and
number of characters of the source message is transmitted to a
receiver for decoding process.

4.4 Lempel-Ziv Coding

Lempel-Ziv coding was proposed by Jacob Ziv and Abraham
Lempel in 1977 and 1978. Lempel-Ziv coding is a lossless data
compression that based on dictionary scheme. It can be divided
into two types: LZ77 and LLZ78 as shown in Fig. 2 for the evalua-
tion of Lempel -Ziv. .Z77 family is based on the sliding window
algorithm to generate the dictionary and L.Z78 forms to the dic-
tionary by parsing the source data. The detail of 1.Z77 and L.Z78
is described in the following section.
441 LZ77

In the LZ77 approach, it exploits the words and phrases in the
data source with repetition to encode. L.Z77 encodes the repe-
tition by a pointer to the number of characters that match with
prior occurrence. The dictionary in 1.Z77 is the portion of the
previously encoded sequence.

In the encoded processes, the input sequence is examined

IPSJ SIG Technical Report

+ Linear time, File size decrease

detection
LZR
(1981)

+ stores unique

2 Size of pointer
incdges proportional + Monilpf the
to SKging window compredsion ratio +

+ Huffmap/Coding

Fig.2 Taxonomy of LZ compression techniques

through a sliding window that consists of two parts: search buffer
that contains a part of encoded sequence and look forward buffer
that contain the next part of the sequence to be encoded. The
longest sliding window that matches with the beginning of look
forward buffer is searched and then outputs a pointer to that
match. If there is no match, the output cannot contain just point-
ers. Generally, the pointer in LZ77 is always output as (offset,
length, symbol). The offset is referred as offset of the match, the
length is referred as the length of the match, and symbol is re-
ferred as the next symbol after the match. If there is no match,
the offset and the match length will be equal to 0 and the symbol
is equal to the first symbol in the look forward buffer.

There are several variations on 1.Z77 technique, but in this pa-
per, we only describe a few well know LZ techniques that under
LZ77 such as LZR, LLZSS, LZH, and LZB as shown in Fig.2. LZR
can be stand for Lempel-Ziv-Rodel. It is a modification of L.Z77
that aim to be a linear time alternative. Although the pointer in
LZR can be pointed to any offset in the file, it consumes amount
of memory. Therefore, it is an unfeasible variant.

Lempel-Ziv-Storer-Szymanski (LZSS) technique is an im-
provement of LZ77 with the function of determining whether a
substitution will increase the file size or not before proceeding
the encoder process. If there is no size reduction, the input will
not be encoded. Otherwise, the input is replaced with (offset,
length) pair of the character read from the position. Moreover,
LZSS eliminates the next character or symbol from the output.
It only uses offset-length pair. Lempel-Ziv-Huffman (LZH) and
Lempel-Ziv-Bell (LZB) are the variant of LZSS. LZH uses the
Huffman coding to compress the pointer to increase the compres-
sion ratio, while LZB gradually increases the size of the pointer
as the sliding window increases to improve the encoded LZSS
pointer compression. L.ZB achieves a higher compression ratio
than LZSS and LZH, but it has taken more time to process due to
the extra encoding step for pointers.

44.2 LZ78

Instead of using the sliding window method to build the dictio-
nary, LZ78 form a dictionary as the file is parsed. .Z78 adds each
newly encountered character to the dictionary while parsing the
file. A dictionary entry with the form of (D_index, N_symbol) is

© 2013 Information Processing Society of Japan

Vol.2013-MBL-67 No.12
Vol.2013-CDS-8 No.12
2013/9/13

generated for each symbol in the input is read. If a symbol exists
in the dictionary, the dictionary will search for substrings of the
current symbol and following symbol. The index of the longest
substring match is selected for the D_index. The last character
that data pointed for the D-index is added to N_symbol). If the
current symbol is unknown, the D_index is set to O to indicate
that it is a single character entry. Thus, the entries form a linked-
list type data structure.

LZW is the most commonly used of LZ78 family. It removes
redundant characters in the output and makes the output entirely
out of pointers. It includes every character in the dictionary be-
fore start to compress and improves the compression by encode
the last character of every new phase as the first character of the
next phase.

Lempel-Ziv-Compress (LZC) is the modification of LZW that
include the monitoring function on the compression ratio of the
output. Once the ratio over a certain threshold, the dictionary is
discarded and rebuilt. While Lempel-Ziv-Ticher (LZT) improves
the LZC by replacing the least recently used phase with a new
entry when the dictionary is full. Lempel-Ziv-Miller-Wegman
(LZMW) uses the method of joining the last two phases encoded
and stores the result as a new entry to solve the dictionary over-
load problem. Whereas Lempel-Ziv-All-Prefixes (LZAP) which
modify from LZMW store every permutation in the dictionary
rather than store a single phase in the dictionary for each itera-
tion. LZWL is one of the variants of LZW. It is created to work
on certain data sets such as XML.

Lempel-Ziv-Jakobson (LLZJ) is one of the L.Z78 variants that
deviates from LZW. It stores every unique string until the maxi-
mum length in the dictionary and assigns codes to each of them.
When the dictionary is full, entries that occurred once will be re-
moved.

5. Results and Discussion

5.1 Performance Evaluation

In this paper, the lossless compression techniques such as RLE,
Huffman coding, arithmetic coding, and LZW performance are
examined with the following measurement.

Compression Ratio (CR) which is the ratio between the size of
compressed file and the size of the source file.

size after compression

R = M

size be fore compression

Improvement percentage (IP) is the reduction of the source file
in percentage.

P size before compression — size after compression

@

size before compression

Moreover, the time efficiency and space efficiency of the com-
pression techniques also measure through calculating the time
and memory need to compress the file.

Instead of determining the relationship between the type of file
and the compression ratio, we identify the relationship of redun-
dant information with compression ratio. Therefore, we calculate
the average maximum redundancy in percentage of the charac-
ter in the file for RLE, Huffman coding and arithmetic coding
compression and average maximum redundancy in percentage of

IPSJ SIG Technical Report

the words or phases pattern for LZW compression. The redun-
dancy in this context is referred as the total number of reflections
scanned divided by the total number of unique reflection. In this
paper,a text format of three online articles from “Time” are se-
lected as sample test.

5.2 Simulation Results

In order to obtain the average maximum redundancy from an
article, the frequency of each character in an article is calculated
and find the average maximum of the unique reflection. The Ta-
ble 2 shows the data redundancy calculation for the selected three
articles and AMR. in Table is denoted as Average Maximum Re-

dundancy.
Table 2 Data Redundancy Calculation
File Total AMR. of | AMR. of
Name Character | Character | word Pattern
Article 1 | 6247 12.0% 9.1%
Article 2 | 6242 12.1% 6.3%
Article 3 | 2982 10.9% 5.6 %

Then, the Compression Ratio (CR), Improvement Percentage
(IP), compression processing time (Time) in seconds, memory
space need during compression (Space) in byte are calculated for
the RLE coding, Huffman coding, arithmetic coding, and LZW
coding. The results are shown in Table 3 to Table 6.

Table 3 Compression results for RLE Coding

Article | Input | Compression | CR P Time
Size Size (%) | (ms)
1 1200 | 1085 0.904 | 14.0 | 1700
1300 | 1159 0.891 | 10 1765
3 700 637 0911 | 9 958

Table 4 Compression results for Huffman Coding

Article | Input | Compression | CR P Time

Size Size (%) | (ms)
1 1200 | 741 0.618 | 38 2743
2 1300 | 754 0.580 | 42 2897
3 700 553 0.790 | 21 1876

Table 5 Compression results for Arithmetic Coding

Article | Input | Compression | CR P Time

Size Size (%) | (ms)
1 1200 | 697 0.580 | 41 4741
2 1300 | 636 0.489 | 51 4912
3 700 418 0.598 | 40 2709

Table 6 Compression results for LZW Coding

Article | Input | Compression | CR P Time
Size Size (%) | (ms)

1 1200 | 1025 0.854 | 1.45 | 2193
1300 | 882 0.678 | 31 1

3 700 379 0.542 | 45 1

© 2013 Information Processing Society of Japan

Vol.2013-MBL-67 No.12
Vol.2013-CDS-8 No.12
2013/9/13

5.3 Result Discussion

The simulation results showed that RLE coding perform poorly
for text format file. This is due to a repetition sequence characters
in text format seldom exists. However, RLE can perform well for
the image having solid black pixels. In addition, RLE takes the
least time to compress the data compare to others compression
techniques.

5.4 General Discussion

In this section, the lossless compression techniques of RLE
coding, Huffman coding, arithmetic coding, and LZW are clas-
sified into the target domain and complexity degree. Moreover,
the advantages and disadvantages of the compression techniques
in the domain of congested wireless networks will also discuss
here.

The Table 7 shows the target domain and the complexity de-
gree of these lossless compression techniques. The target domain
in here is classified into three: text format, figure format and both.
The aim is to categorize the type of data format that suit for these
four compression techniques.

There are three degrees of complexity define in this context:
low, medium, and high. In the low complexity, the time needed
to compress a data is low. When the complexity degree is getting
higher, the time needed to compress a data will get higher.

Table 7 Lossless Compression Techniques with Target Domain and Com-

plexity Degree
Compression | Target Complexity
Techniques Domain | Degree
RLE Image Low
Huffman Both Medium
Arithmetic Both High
LZW Text High

In the congested wireless network, the bandwidth capacity is
overloaded. The congestion control in TCP will reduce the trans-
mission rate by decrease congestion window to mitigate the con-
gestion problems. However, congestion control in TCP has a dif-
ficulty to distinguish the congestion is due to buffer overflow or
the medium contention and poor radio link for wireless networks.
Therefore, instead of reducing the transmission rate to mitigate
the congestion problem, the compression can be one of the so-
lution in congestion control for the wireless networks. The ad-
vantages of compression techniques in congestion control is they
have the ability to reduce the number of bits required to represent
data and decrease the transmission time.

Unlikely, the compression techniques have some drawbacks in
network point of view. There is no lossless data compression that
can guarantee the compression of all input data. Sometimes, the
lossless compression techniques may larger the file size instead of
reduce. By this way, the compression may cause the congestion
ever worst.

However, with the hybrid technology of prediction, compres-
sion, network coding, and TCP congestion control, the conges-
tion in the wireless networks is believed can be significantly re-
duced.

i Vol.2013-MBL-67 No.12
IPSJ SIG Technical Report Vo013 CD s N 1o

2013/9/13

6. Concluding Remarks

We have presented a comprehensive review of the four types of
lossless compression techniques; RLE is coding, Huffman cod-
ing, arithmetic coding, and LZW coding. Based on this study,
RLE coding is not suitable for text compression. While other
compression techniques can be used to compress the data text
format. In future work, the joint technique of compression and
congestion control in TCP will be studied.

References

[1] R. Jain, and K. K. Ramakrishnan: Congestion avoidance in computer
networks with a connectionless network layer: concepts, goals, and
methodology, Proc. Comput. Netw. Symp. , Washington, USA, pp.134
143 (1988)

[2] M. A. Laham, and I. M. M. E. Emary: Comparative study between
various algorithms of data compression techniques, World Congr. on
Eng. and Comput. Sci. , San Francisco, USA, pp. 326 336, 2007.

[3] S. Shanmugsundaram, and R. Luordusamy: A comparative study of
text compression algorithms, Int. J. of Wisdom Based Comp. , vol. 1,
no. 3, pp. 68 67, December 2011.

[4] Sashikala, Y. Melwin, S. S. Arunodhayan, and M. N. Nachappa: A
survey of compression techniques, Int. J. of Recent Technol. and Eng.
(IJRTE) , vol. 2, no. 1, pp. 152 156, March 2013.

[51 D. Kaur, and K. Kaur: Analysis of lossless data compression tech-
niques Int. J. of Comp. Eng. Research , vol. 3, no.4, pp. 123 127,
April 2013

[6] V.S.Gulhane, and M. S. Ali: Survey over adaptive compression tech-
niques Int. JI. of Eng. Sci. and Innovative Technol (IJESIT) , vol. 2, no.
1, pp. 152 156, January 2013

(71

© 2013 Information Processing Society of Japan 6

