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Abstract: A new method for estimating a six-degrees-of-freedom camera pose for a ground-view image using refer-
ence points on an aerial image is presented. Unlike typical PnP problems, altitude information is not available for the
reference points in our case. The camera pose is estimated by minimizing a cost function defined as the sum of squared
distances between observed 2D positions of reference points on a ground-view image and corresponding lines that are
projections of 3D vertical lines passing through 2D reference points on an aerial image. The accuracy of the proposed
method is evaluated quantitatively in both simulation and real environments. The availability of the proposed method
is demonstrated by generating AR images from aerial and ground-view images downloaded from Google Maps and
Flickr.
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1. Introduction

The estimation of a six-degrees-of-freedom (6-DOF) camera
pose (position and posture) from a still image using reference
points of known 3D positions is called a perspective-n-points
(PnP) problem and solvers for the problem [1], [2], [3], [4], [5],
[6], [7] are very useful for many types of applications such
as image-based 3D reconstruction and augmented reality (AR).
In order to estimate the camera pose in large outdoor environ-
ments, several kinds of references (pre-knowledge), e.g., street-
view images [8], 3D CAD models [9], [10], feature landmark
databases [11], [12], aerial images [13], [14], [15], have been
used. In this paper, we focus on aerial images that already ex-
ist for many places in the world.

Aerial image-based methods [13], [14], [15] estimate the cam-
era pose of a ground-view image from correspondences of refer-
ence points or lines on a ground-view image and aerial image. In
most cases, aerial images are taken very far away from the ground
and thus they are assumed to be captured with orthographic pro-
jection. Unlike other types of references, unfortunately, standard
aerial images have no accurate altitude (height) information; thus,
the common solvers for PnP problems [1], [3], [4], [5], [6], [7],
which require 3D reference points, are not applicable. Common
epipolar geometry estimators [4] for perspective imagery are also
not useful in this case because of the combination of orthographic
projection (aerial images) and perspective projection (ground-
view images).

Most conventional works that use aerial images estimate cam-
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era poses by assuming that all of the altitudes of the reference
points are the same or by reducing DOF to three when estimating
the camera pose. Noda et al. [13] estimated the 3-DOF pose of a
camera mounted on a vehicle in an environment where the ground
surface was assumed to be flat plane that is parallel to the aerial
image plane. They estimated the 2D camera position and direc-
tion by using the homography computed for an aerial image plane
and ground plane in an input image. By combining the homogra-
phy parameters for multiple images, they successfully determined
the camera position even though there were few observable fea-
ture points from a single viewpoint. Although it is possible to
decompose the homography parameters to a 6-DOF camera pose,
the problem of assuming a flat and level ground still exists. Cham
et al. [14] estimated the 3-DOF pose for an omni-directional cam-
era by using the boundary of buildings extracted from a 2D map.
In their work, the normal vectors of building sides were first com-
puted by using the vanishing points detected from vertical edges
of the buildings. A 3-DOF camera pose was then computed by
using the geometric relationship of corresponding normal direc-
tions of the building sides on the 2D map.

A simple idea for 6-DOF pose estimation is to use PnP solvers,
which can handle points on a plane [1], [3], [4], [5], [6], [7]. By
using these solvers with known intrinsic camera parameters, a
unique solution can be linearly computed by assuming that all of
the altitudes of the reference points are the same, which means
that the reference points are on a flat plane that is parallel to an
aerial image plane. Although most common methods are use-
ful for certain applications, e.g., vision-based robot localization
in a flat environment, a method that can estimate camera poses
even in non-flat environments is preferable. Yet another type of
PnP solver estimates a 6-DOF camera pose using 3D reference
lines, e.g., wire frame models [16], [17], [18]. This approach is
closely related to our approach because 2D reference points with
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arbitrary altitudes on an aerial image can be treated as 3D refer-
ence lines. Dhome et al. [16] proposed PnP solvers using lines
under the condition that all of their 3D reference lines are not
parallel to each other. Ramalingam et al. [18] provided minimal
solutions for this problem. Such solvers are effective in the envi-
ronments where many lines can be observed. On the other hand,
Zhang et al. [19] proposed the epipolar geometry estimator for
the combination of orthographic projection and weak-perspective
projection. Although a 6-DOF camera pose can be linearly com-
puted by minimizing object space errors derived from the epipo-
lar constraint in this method, the performance of this method for
the combination of strong-perspective (ground view) and ortho-
graphic (aerial) images has not been evaluated. In the experiment
of this paper, we will show that our method, which minimizes
the errors on the image space, gives more accurate camera pose
than the method [19] for the combination of strong perspective
and orthographic projection images.

In order to achieve 6-DOF camera pose estimation for a strong-
perspective ground-view image using 2D reference points dis-
tributed on non-flat sloping ground on an aerial image, we newly
define a cost function for this case. More concretely, camera pa-
rameters are determined to minimize the cost function, which is
defined as the sum of new reprojection errors. We first estimate
the initial pose by quasi-linearly minimizing the approximated re-
projection errors, and newly defined reprojection errors are then
minimized nonlinearly. Provided that intrinsic camera parameters
are known, we can estimate the 2-DOF absolute camera position,
3-DOF absolute camera posture in the world coordinate system
as defined in an aerial image, and 1-DOF relative height of the
camera from reference points. In order to achieve more accurate
and robust estimation in many real situations, we also examine
the case in which the gravity direction is given, e.g., from van-
ishing points of parallel lines [20] or a gyro sensor. Although
intrinsic camera parameters are assumed to be known in this ar-
ticle, we will show that we can generate good AR images when
using Internet photographs for which there are no accurate in-
trinsic camera parameters available. It should also be noted that,
although we do not care about the method for finding good cor-
responding pairs of feature points between images in this article,
we will show that the proposed method can remove outliers by
applying RANSAC scheme in the experiment.

2. Camera Pose Estimation for a Ground-view
Image Using Reference Points on an Aerial
Image

As shown in Fig. 1, we define the cost function in this article
as the sum of reprojection errors: these are distances between the
observed 2D position mi of reference points i on a ground-view
image and the corresponding line gi, which is the projection of the
3D vertical line passing through the 2D position Pi of reference
point i in an aerial image. Although a 6-DOF camera pose can be
estimated by being minimized, a good initial pose is required be-
cause this is a nonlinear least squares minimization problem. In
order to estimate an initial pose, we also define another cost func-
tion: the sum of approximated reprojection errors on an aerial
image, which can be minimized quasi-linearly.

Fig. 1 Reprojection error for reference point without altitude information.

Fig. 2 Corresponding reference points between a ground-view image (left)
and an aerial image (right).

A camera pose for ground view image is estimated by the fol-
lowing steps.
( 1 ) Reference points on a ground-view image and aerial image

are matched.
( 2 ) An initial 5-DOF camera pose excluding the altitude is esti-

mated by quasi-linear minimization of the approximated re-
projection errors.

( 3 ) The 5-DOF camera pose is refined by nonlinear minimiza-
tion of the reprojection errors.

( 4 ) The relative altitude for each reference point (remaining 1-
DOF) is computed from the estimated 5-DOF camera pose.

In this article, we define the X − Y plane in the world coordi-
nate system as being on the horizontal plane of the aerial image
as shown in Fig. 1, and the Z axis as the altitude direction. The
intrinsic camera parameters are assumed to be known, and the
corresponding pairs of reference points in step 1 are assumed to
be given. Figure 2 shows an example of manually matched points
between a ground-view image and aerial image. We assume that
the aerial image is taken very far away from the ground. It pro-
vides an orthographic top-down view of a scene where the camera
model can be an affine projection, and it is generated by project-
ing the 3D scene onto the horizontal ground surface. Points that
do not exist on the ground surface are obliquely projected onto
the aerial image as shown in Fig. 2 (right). Such points, e.g., on
top of a building in a ground-view image are assumed to match
the corresponding positions on the ground surface in the aerial
image in our case. For example, in Fig. 2, the reference point at
the top of the building in the ground-view image (left) should not
be matched to the red point on the aerial image (right) but to the
point at the bottom of the building in the aerial image. Through
this approach, even if an aerial image is captured obliquely, cor-
responding points that are not on the ground can also be used as
reference points. In the following sections, two cost functions are
defined, and their minimization processes are then detailed.
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Fig. 3 Parameters for an aerial image plane.

2.1 Cost Functions
2.1.1 Reprojection Error

As shown in Fig. 1, we define the cost function Ev, which is a
sum of reprojection errors, as follows:

Ev =
n∑

i=1

|mi − vi|2 , (1)

where mi is the observed 2D position of reference point i on the
ground-view image, vi is the point closest to mi on the projected
line gi, and n is the number of corresponding pairs.
2.1.2 Approximated Reprojection Error

In order to estimate an initial pose, we define the additional
cost function Ea which is the sum of approximated reprojection
errors on an aerial image. As shown in Fig. 3, Ea is defined as
the weighted sum of squares of di representing the distance be-
tween a 2D position Pi = (Xi, Yi)T of reference point i and a 2D
line si, which is a projection of the ray passing through the pro-
jection center t of the ground-view camera and observed position
of reference point i on the ground-view image. Ea is defined as
follows:

Ea =

n∑

i=1

a2
i , a

2
i =

d2
i

l2i
, di = |Pi − qi|, li = |Pi − t|, (2)

where qi is the closest 2D position of Pi on si. Supposing that the
rotation matrix from the camera coordinate system (the 3D coor-
dinate system which has its origin at the projection center) to the

world coordinate system is defined as R =
(
rT

1 , r
T
2 , r

T
3

)T
, and the

camera position on the X − Y plane is t = (t1, t2)T, we obtain the
following equations based on the orthogonality and collinearity
conditions of vectors.

(qi − Pi) · (qi − t) = 0, (3)

(qi − t) = λi(pi · r1,pi · r2)T, (4)

where · indicates the inner product of two vectors, λi is a param-
eter for each i, pi is a 3D vector from the projection center to
the observed position of the reference point i on the ground-view
image in the camera coordinate system, and (pi · r1, pi · r2)T is
the projected 2D vector onto the X − Y plane of the 3D vector pi.
From Eqs. (2) to (4), we obtain

ai = l−1
i wi {pi · (t2r1 − t1r2) − Yi(pi · r1) + Xi(pi · r2)} , (5)

wi =
{
(pi · r1)2 + (pi · r2)2

}− 1
2 . (6)

2.2 Estimation of 6-DOF Camera Pose
In this section, we first detail the minimization process of each

cost function to estimate a 5-DOF pose. We then describe the
method for determining the relative altitude of each reference
point.

2.2.1 Estimation of Initial 5-DOF Camera Pose
The cost function Ea is minimized to obtain an initial 5-DOF

camera pose, which is used to minimize Ev. First, Eq. (5) is uni-
fied about n corresponding pairs as follows:

(a1, a2, · · · , an)T =WAx, (7)

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l−1
1 w1 · · · 0
... l−1

2 w2

...

. . .

0 · · · l−1
n wn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pT
1 −Y1pT

1 X1pT
1

pT
2 −Y2pT

2 X2pT
2

...
...

...

pT
n −YnpT

n XnpT
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9)

x = (t2r1 − t1r2, r1, r2)T, (10)

where W ∈ Rn×n in Eq. (8) is a diagonal weighting matrix, A ∈
R

n×9 in Eq. (9) is composed of known parameters, and x ∈ R9×1 is
an unknown parameter vector. From Eq. (7), Ea = |WAx|2. If all
of the parameters of W are known and n ≥ 8, x can be determined
by linearly minimizing |WAx|2.

However, there are two problems with minimizing |WAx|2.
First, W is comprised of unknown parameters. Second, x is
comprised of the products of the unknown parameters. For the
former problem, we first initialize W as an identity matrix and
iteratively update it by solving x. For the latter problem, after
determining r1 and r2 by orthonormalizing them, t1 and t2 are
determined by treating r1 and r2 as constants. By iterating these
steps, (r1, r2, t1, t2) are determined quasi-linearly. After a certain
number of iterations, r3 is computed from r1 and r2 based on
the orthonormality condition of the basis vectors. In this mini-
mization, an outlier detection scheme, e.g., RANSAC [1], can be
incorporated.

It should be noted that when all of the reference points are ob-
served on the same line in a ground-view image, we cannot es-
timate the camera pose due to the rank-deficiency of the matrix
A. In Section 3, we examine another scenario where the gravity
direction is assumed to be known to avoid this critical condition.
2.2.2 Refinement of 5-DOF Camera Pose

From the initial 5-DOF camera pose estimated in the previous
step, the cost function Ea is first minimized nonlinearly using the
Levenberg-Marquardt algorithm because all of the camera param-
eters are not simultaneously optimized in the previous step. Next,
the reprojection error Ev defined in Eq. (1) is minimized to esti-
mate a 5-DOF camera pose in the same manner.
2.2.3 Computation of Relative Altitude

Relative altitude t̂3i for each reference point i from the cam-
era (remaining 1-DOF) is calculated from the estimated 5-DOF
camera pose as

t̂3i = λi(pi · r3), (11)

where λi is computed using Eqs. (2) to (4) as follows:

λi = w
2
i |(pi · r1)(Xi − t1) + (pi · r2)(Yi − t2)| . (12)
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3. Camera Pose Estimation Using a Given
Gravity Direction

As the distribution of observed positions of reference points on
a ground-view image approaches linear distribution (discussed in
Section 2.2), the pose estimation using the method described in
Section 2.2 becomes unstable. In practical situations, observed
points on the ground surface are often distributed linearly and
horizontally on a ground-view image and come close to the criti-
cal condition. In this case, especially, the gravity direction of the
camera becomes unstable because the reprojection error becomes
insensitive to the changes of the camera posture except for the
yaw-angle. If the gravity direction is given from other sources,
the estimation can be kept stable even in the critical condition.
The following sections describe the method for camera pose esti-
mation where the gravity direction is given.

3.1 Gravity Direction Estimation
The gravity direction can be assumed to be known in some

cases, e.g., using the vanishing points of parallel lines [20] or a
gyro sensor. Image-based estimation using vanishing points can
be used for an image taken in an environment where vertical lines
on building structures are visible. For the other approach, most
recent smartphones with camera units have gyro sensors embed-
ded inside that provide accurate gravity direction. Even a cheap
gyro sensor provides the direction of gravity with an accuracy of
about 0.5◦. In the experiments presented in Section 4, we will
show that camera pose can be accurately estimated by using an
estimated gravity direction from an image.

3.2 6-DOF Camera Pose Estimation Using a Given Gravity
Direction

When the gravity direction is given, 2-DOF (pitch and roll) of
the camera posture can be determined. In this case, the number
of unknown parameters for cost functions Ea and Ev is reduced
to three. We estimate a 3-DOF camera pose in the same manner
as the method described in Section 2.

We first redefine the parameters required to compute the cost
function Ea using the given unit vector gc of gravity direction in
the camera coordinate system:

gc = RTg, (13)

where g = (0, 0,−1)T is a unit vector of gravity direction in the
world coordinate system. From Eq. (13), we obtain

r3 = −gT
c . (14)

From the orthonormality condition of the rotation matrix R, r2 is
defined as follows:

r2 = r3 × r1. (15)

Substituting Eqs. (14) and (15) into Eq. (5), the parameters to
compute Ea are redefined as follows:

ai = l−1
i wi {pi · (t2r1 − t1(r3 × r1)) + bi · r1} , (16)

bi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Xi(r32 + qir33) − Yi pi

Xi(pir33 − r31) − Yiqi

Xi(qir31 − pir32) − Yi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

, (17)

pi = (pi, qi, 1)T, (18)

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pT
1 b1

pT
2 b2

...
...

pT
n bn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (19)

x = (t2r1 − t1(r3 × r1), r1)T. (20)

When n is five or more, the initial 5-DOF camera pose can be
determined by the method detailed in Section 2.2.1 using these
equations. Then, Ea and Ev are minimized nonlinearly from the
initial camera pose. The relative altitude can also be computed
from the estimated 3-DOF and given 2-DOF.

4. Experiments

In order to evaluate the performance of the proposed meth-
ods in non-flat environments, the accuracies of the following four
methods are compared quantitatively in both simulation and real
environments.

P4P2D: Conventional PnP solver for a planar surface.
EPI2D: Zhang’s epipolar geometry estimator [19] that uses

weak-perspective assumption.
P8P2D: Proposed method with unknown gravity direction.
P5P2D: Proposed method with known gravity direction.

4.1 Quantitative Evaluation in Simulation Environment
4.1.1 Setting

In order to compare the accuracies of the methods in vari-
ous situations, we have used the simulation environment shown
in Fig. 4, where reference points are randomly spread inside a
cuboid using variable parameters α, β and γ, which are the height,
the depth and the width of the cuboid, respectively. The camera
(Image resolution: 1,280× 865 (px), focal length: 885 (px), FoV:
71.7◦ × 44.3◦) is set at the position shown in Fig. 4, and the di-
rections of basis vectors are set to be the same as those of the
world coordinate system. In this experiment, 12 reference points
are randomly spread inside the cuboid, and reference points are
projected onto the image plane with quantization errors and the
Gaussian noise of the standard deviation ω (px). The projected
positions of the reference points on X-Y plane (positions on aerial
image) and the perspectively projected positions of the reference
points on the image with Gaussian noise (positions on ground-
view image) are used as inputs for each method. For P4P2D,
all of the altitudes of the 2D reference points are treated as 0
for input. The gravity direction for P5P2D is generated from the
ground truth by adding the Gaussian noise of the standard devia-
tion σ = 0.0, 1.0 (degree). It should be noted that α and β in this
experiment denote the level of discrepancy from the flat ground
assumption, and the weak-perspective assumption, respectively.
4.1.2 Results

We have evaluated the accuracy for both (a) initial camera
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Fig. 4 A simulation environment.

(a) Initial camera poses

(b) Refined camera poses

Fig. 5 Average pose errors for variable α (β = 50, γ = 20, ω = 1.0).

poses without minimization of reprojection errors and RANSAC,
and (b) refined camera poses with RANSAC. Figures 5, 6, 7 and
8 show the position and posture errors for variable α, β, γ, ω, re-
spectively. These errors are computed by comparing them with
the ground truth over 1,000 trials. Here, the position error of the
camera is computed as the 2D distance between camera position
and the ground truth on the aerial image plane because absolute
altitude is not available in this experiment. The posture error in-
dicates the angle of the YC axis between that estimated and the
ground truth.

Figure 5 shows the result for variable α (height). Here, α = 0
means that all of the observed points exist on a flat surface (X−Y

plane). As we can see in this figure, errors of P4P2D are drasti-
cally increased as α becomes higher. In the case α is large, the
flat surface assumption used in P4P2D is violated.

Figure 6 shows the result for variable β (depth). We can con-
firm that P8P2D gives us better results than that by EPI2D when
the distribution of the depth of the reference points becomes large.
Figure 7 shows the results for variable γ (width). We can see that
wider point distribution is better for pose estimation by E8P2D
and EPI2D.

Figure 8 shows the result for variable noise level ω. Even for
larger noise level, the proposed method achieves better perfor-
mance than EPI2D. From all the results, it can be confirmed that
P5P2D provides the most stable and accurate camera poses com-
pared to those produced by others for various point distributions
of reference points and noise level. From these observations, we

(a) Initial camera poses

(b) Refined camera poses

Fig. 6 Average pose errors for variable β (α = 0, γ = 20, ω = 1.0).

(a) Initial camera poses

(b) Refined camera poses

Fig. 7 Average pose errors for variable γ (α = 0, β = 50, ω = 1.0).

(a) Initial camera poses

(b) Refined camera poses

Fig. 8 Average pose errors for variable ω (α = 0, β = 50, γ = 20).
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Fig. 9 An example of given point correspondences between a ground-view image (left) and an aerial im-
age (right). The yellow and blue points indicate the points in S 2D and S 3D, respectively. The blue
triangle indicates a camera pose estimated by P5P2D using given points. White lines in the left
image are projected lines of reference points with arbitrary altitudes using the estimated camera
pose.

Fig. 10 Camera poses estimated by P5P2D (blue) and ground truth (red).

can conclude that our method has a clear advantage for camera
pose estimation especially when reference points are widely dis-
tributed in a 3D space and they are detected with large errors.

4.2 Quantitative Evaluation in Real Environment
4.2.1 Setting

In this experiment, we have evaluated performance of the com-
pared methods using 30 ground-view images from a dataset of
Campus Package 02 on TrakMark [21] [trakmark.net] which is
publicly available on the Internet, as input images of a real en-
vironment. The reference camera pose of each image, which are
included in this package, is used as the ground truth for this ex-
periment. In addition to this dataset, we have downloaded the
aerial image covering the area of this dataset from Google Maps
[maps.google.com]. In order to evaluate estimated camera poses
quantitatively, we have aligned the coordinates of the aerial im-
age and the reference points in the dataset using a transforma-
tion matrix computed by manually specifying reference points on
the aerial image. For this dataset, we first manually found cor-
responding points between the ground-view images and 2D ref-
erence points on the aerial image. We then classified reference
points into two groups: S 2D includes points on the ground sur-

face, and S 3D includes the other points. Each method is tested
using both S 2D and S 2D∪S 3D as input. Figure 9 shows an exam-
ple of the given corresponding points between the ground-view
and aerial images.

In this experiment, gravity directions for P5P2D are estimated
from the images using the method proposed by Criminisi et
al. [20]: the vertical lines of building edges are specified man-
ually for every ground-view image. The average error of the esti-
mated gravity directions (from ground truth) was 0.36◦. We have
also tested one extension here for more stable estimation: when
two or more points are given on the same line of the vertical edge
in the image, we automatically generate additional points along
this line where all points correspond to the one reference point on
the aerial image. Here, RANSAC and the refinement process are
used to remove outliers and to minimize reprojection errors for
all the compared methods.
4.2.2 Results

Figure 10 compares the ground truth and camera poses es-
timated by P5P2D with S 2D drawn on the aerial image. We
can confirm that the camera poses by P5P2D are correctly esti-
mated for this dataset. The average errors of the position and
posture estimated by each method are shown in Figs. 11 and 12
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for the dataset S 2D and S 2D ∪ S 3D, respectively. Although
P4P2D provides a reasonable estimate for the camera position
of dataset S 2D, P5P2D gives us more accurate results due to the
slightly sloped ground of the target environment. For the dataset
S 2D ∪ S 3D, P4P2D could not provide valid results due to the vi-
olation of the flat surface assumption. Although P8P2D is not
accurate for S 2D, P8P2D obtains more accurate camera poses for

Fig. 11 Comparison of average errors of estimated position and posture for
the dataset S 2D.

Fig. 12 Comparison of average errors of estimated position and posture for
the dataset S 2D ∪ S 3D.

Fig. 13 AR landscape simulations: (a) Internet photographs from Flickr and Google, (b) aerial images
from Google Maps, (c) CG objects drawn on aerial images, (d) generated AR images. White
points are manually given reference points.

S 2D ∪ S 3D, where the points are widely distributed on the image.
P5P2D which uses estimated gravity direction gives stable and
accurate camera poses for both datasets. In this experiment for
EPI2D, we found that the RANSAC automatically removed sets
of randomly selected reference points in which points are widely
distributed for depth direction. This means that selected feature
points were adjusted so that EPI2D can work with weak perspec-
tive assumption. However, the number of available feature points
is reduced in this case, and it results in worse accuracy than that
produced by the P8P2D.

In this experiment, average computational costs of P8P2D and
EPI2D with PC (Core i5-2467M 2.3 GHz) were 30.9 (ms/image)
and 16.0 (ms/image), respectively. Although our method needs
slightly more time for camera pose estimation than EPI2D, this
cost will not be a bottleneck of actual AR applications.

5. Demonstration

In this section, we demonstrate the availability of the pro-
posed method for landscape simulation. First, we have down-
loaded aerial images from Google Maps and Internet photographs
from Flickr [flickr.com] and Google [google.com]. CG objects
aligned to the aerial image were downloaded from Google 3D-
Galerie [sketchup.google.com/3dwarehouse]. We have estimated
the camera pose for each photograph by P8P2D using manually
matched reference points, and the AR images are generated us-
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ing estimated camera poses. Here, the relative altitude between
the camera and CG object is estimated by manually selecting a
reference point existing on the ground surface. Because accurate
intrinsic camera parameters of each photograph are not available,
we estimate the field of view and projection center by the exhaus-
tive search for these parameters and selecting the one with the
smallest reprojection error. In these landscape simulations, lens
distortion is not considered. As shown in Fig. 13, we can suc-
cessfully generate AR images for many places in the world using
only images.

6. Conclusion

We have proposed a method for estimating a 6-DOF cam-
era pose for a ground-view image using reference points on an
aerial image. In order to estimate a 6-DOF camera pose in non-
flat environments without altitude information, a cost function
is newly defined as the sum of reprojection errors for lines and
points. In the experiments, we have confirmed that the proposed
method accurately estimates camera poses compared to conven-
tional solvers that assume a planar surface and weak-perspective
projection. The availability of the proposed method is demon-
strated by generating augmented reality (AR) images from aerial
and ground-view images downloaded from the Internet.

At this moment, our method is useful for the application of of-
fline land scape simulation in which corresponding pairs of fea-
ture points can be manually given by users. However, in order
to generate an AR image on a real site without manual opera-
tion, an automatic method for feature point matching is neces-
sary. Although feature point matching between an aerial image
and a ground view image is unfortunately still an open problem
in this field, we will investigate the solution by combining the
state-of-the-art techniques including automatic and global image-
rectification techniques [22], [23] and locally distortion-resistant
feature operators [24], [25] with roughly limited searching pa-
rameter space (e.g., by GPS, gyro and compass).
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