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Abstract: This paper presents a method for improving the accuracy of template-based planar tracking. It has been
shown that when the ROI of the input image has a lower resolution than the template, tracking accuracy will deterio-
rate; then, this can be remedied by blurring the template in response to the motion of the plane. In this study, we show
that, conversely, when the template has a lower resolution than the input image, tracking accuracy will deteriorate in
a different manner. We then present a method that can simultaneously deal with both cases and thus achieves higher
tracking accuracy.
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1. Introduction

It is one of the fundamental problems of computer vision to
visually track a planar object moving in space. In fact, it is indis-
pensable for tracking features in video images and many applica-
tions of augmented reality (AR).

There are two approaches to the problem: the feature-based ap-
proach [7], [9], [13] and the template-based approach [1], [2], [3],
[4], [5], [6], [10], [11], [12]. The former first extracts primitives
such as points, lines, etc. from images, and then determines their
geometric relation between the surface texture of the target plane
and the input images. This approach tends to be robust, whereas
its accuracy and speed are not the best.

The template-based approach is to directly compare the image
brightness between the texture of the target plane (i.e., template)
and the input images; it determines the pose parameters of the
plane by minimizing the sum of the brightness differences. This
approach tends to be more accurate owing to the direct compari-
son of the image brightness at each pixel. It is also fast, since only
a small number of iterations are usually necessary to converge by
choosing the estimated pose for the last image as an initial value.

The basic assumption behind the template-based approach is
that the image brightness at each surface point of the target plane
is invariant regardless of how the plane changes its pose in space.
However, this assumption of brightness constancy is often inval-
idated due to several causes such as illumination changes [15],
motion blurs [14], etc., and several studies have been conducted
to overcome the resulting difficulties so far.

Recently, Ito et al. [8] point out that the decreased resolution
of input images, which occurs when the plane moves to a distant
place from the camera or when its surface normal has an oblique
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orientation toward the viewing direction, can also invalidate the
assumption, and show a method that can overcome it.

In this study, extending Ito et al.’s study, we consider dealing
with the more general cases of resolution inconsistencies between
the input images and the template. Ito et al.’s study considers only
one half of such inconsistencies. The remaining half is such that
the input images have higher resolution than the template. Such
cases do often occur, and thus it is important to deal with them.
We present a method to be able to deal with the two halves simul-
taneously in a unified manner.

2. The Template-based Approach

To begin with, we briefly summarize the template-based ap-
proach. Let I∗(p∗) and I(p) be the template and the input image,
respectively. Here, we consider only gray-scale images. In what
follows, we will abuse the notation of image coordinates such as p
and p∗; they will indicate either homogeneous or inhomogeneous
coordinates depending on the context.

We write the planar homography that maps a point p∗ in the
template to a point p in the input image as

p ∝ H0p∗. (1)

When the brightness constancy assumption is valid, there should
exist H0 such that for any p∗ of the template, it holds that

I(H0p∗) = I∗(p∗). (2)

Then, the problem is to obtain such H0. Considering the pres-
ence of image noise, we minimize the sum of squared differences

J(x) =
∑

i

[
I(ĤH(x)p∗i ) − I∗(p∗i )

]2
, (3)

where Ĥ is the latest estimate of H0 and Ĥ(x) is an update we
want to determine; x is an eight-vector that parametrizes the up-
dating homography based on the Lie algebra [3]. When Ĥ is close

c© 2013 Information Processing Society of Japan 109



IPSJ Transactions on Computer Vision and Applications Vol.5 109–113 (July 2013)

to the true homography and thus x is small, J can be “linearized”
with good accuracy by a low-order polynomial of x, for which it is
easy to find the minimizer x. There are several ways of lineariza-
tion, among which we employ the ESM (efficient second-order
minimization) method of Malis et al. [2], [3].

Then, the estimate is updated as Ĥ ← ĤH(x), where x is the
minimizer obtained above. This pair of minimization and update
is iterated until convergence. Generally, it takes a few dozen iter-
ations for each input image, which can be performed in real time.

3. Overcoming Resolution Inconsistency be-
tween Templates and Input Images

3.1 The Case of Decreased Input Image Resolution—
Revisiting the Study of Ito et al.

For the subsequent discussion about the case of increased res-
olution, we summarize here the study of Ito et al. [8]. They con-
sidered the case where the warped input image I(H0p∗) has de-
creased resolution in the domain of p∗ as compared with the tem-
plate I∗(p∗).

Such decreased resolution is caused by the resolution limit of
the imaging system, which can be modeled by a prefilter, which
serves as a low-pass filter eliminating the high-frequency com-
ponent of input images. A standard model of such prefilters is
a Gaussian function f (p) ∝ exp(−p�p/(2σ2

f )) = exp(−(p2
x +

p2
y)/(2σ

2
f )).

When the plane has a pose given by H0 (p ∝ H0p∗), the texture
of the tracked planar region seen from the camera can be modeled
as I∗(H−1

0 p). Applying the prefilter f (p∗) to this, the input image
I(p) can be modeled as

I′(p) = I∗(H−1
0 p) ∗ f (p). (4)

Our purpose is to estimate H0. In the above basic method,
its estimate H1 is determined so that the warped input image
I(H1p∗) is the closest to the template I∗(p∗). Abusing nota-
tions *1 for the sake of brevity, the warped input image I(H1p∗)
can be modeled as

I′(H1p∗) = I∗(H−1
0 H1p∗) ∗ f (H1p∗). (5)

It is observed from Eq. (5) that, even if H1 coincides with the
true homography H0, the right hand side of the equation, which
reduces to I∗(p∗) ∗ f (H1p∗), will not coincide with the template
I∗(p∗). Their difference, i.e., f (H1p∗), explains the decreased
resolution of input images.

Ito et al. resolved this inconsistency by appropriately lower-
ing the resolution of the template I∗(p∗) during tracking, more
specifically, by convolving with the template a linear filter simu-
lating the effect of f (H1p∗). Their solution uses two approxima-
tions. One is that the pose change within each frame is assumed to
be so small that the blurring filter is determined from the estimate
Ĥ at the last frame; it is fixed during the iterative minimization.
The other is that Ĥ is approximated by an affine transform ĤA

for determining the shape of the filter. These make it possible to
approximate Eq. (5) with the convolution of a linear filter given

*1 Rigorously, I′(H1p∗) cannot be represented by the convolution of a lin-
ear filter because of the nonlinearity of H1.

by

f ′(p∗; ĤA) ∝ exp

⎛⎜⎜⎜⎜⎜⎝− 1

2σ2
f

p∗�Ĥ�A ĤAp∗
⎞⎟⎟⎟⎟⎟⎠. (6)

Finally, the objective function is rewritten as follows:

J(x) =
∑

i

[I(ĤH(x)p∗i ) − I∗(p∗i ) ∗ f ′(p∗i ; ĤA)
]2
. (7)

It has been experimentally shown [8] that the optimization using
this function considerably improves the accuracy and stability of
tracking.

3.2 Incorporating the Consideration of Increased Input Im-
age Resolution

When the warped input image is of higher resolution than the
template, the brightness constancy assumption is violated simi-
larly. However, this cannot be dealt with by the above method,
which considers only the opposite case. As increasing the reso-
lution of the template is unrealistic, we consider artificially de-
creasing the resolution of input images.

Suppose that we are given a low-resolution template I∗l (p∗).
We continue to use I∗(p∗) to represent the texture of the target
region of the plane, which has higher resolution than I∗l (p∗). In
the process of tracking, the input image I(p) is warped by H1 to
be compared with the corrected template I∗l (p∗) ∗ f (H1p∗). As
shown in Eq. (5), the resulting image is modeled as I′(H1p∗) =
I∗(H−1

0 H1p∗) ∗ f (H1p∗). It is easy to see that even if H1 = H0,
it will not coincide with the corrected template because of the
difference between I∗ and I∗l .

A straightforward method to correct this difference is to lower
the resolution of the warped input image I(H1p∗) so that its reso-
lution matches that of the template *2. Specifically, incorporating
a new linear filter g(p∗), we apply it to the warped input image
as I(H1p∗) ∗ g(p∗) and compare against I∗l (p∗) ∗ f (H1p∗). The
filtered image is modeled as

I′(H1p∗) ∗ g(p∗) = (I∗(H−1
0 H1p∗) ∗ g(p∗)) ∗ f (H1p∗). (8)

Thus, it suffices to choose g such that I∗(H−1
0 H1p∗) ∗ g(p∗) ≈

I∗(p∗) ∗ g(p∗) has equal resolution to I∗l (p∗). If the template
I∗l (p∗) is of isotropically low-resolution, it will be given as

g(p∗) ∝ exp

⎛⎜⎜⎜⎜⎝− 1
2σ2
g

p∗�p∗
⎞⎟⎟⎟⎟⎠ . (9)

Unfortunately, there are a few problems with this approach.
Firstly, this necessitates warping the input image at every itera-
tion of the minimization. This means that we need to convolve g
with the warped input image every iteration, which significantly
increases the computational cost (Even though we make maxi-
mum use of GPU, filter convolution is computationally expen-
sive). Moreover, as in the case of the decreased resolution, we
may consider the within-frame motion of planes to be sufficiently
small so as not to affect the image resolution. Thus, it is sufficient
to determine the filter solely from the plane pose Ĥ estimated at

*2 It should be noted that it does not work to vary the size (i.e., pixels) of
the template corresponding to its resolution, since using a small sized
template will make tracking very unstable.

c© 2013 Information Processing Society of Japan 110



IPSJ Transactions on Computer Vision and Applications Vol.5 109–113 (July 2013)

the last frame.
Therefore, we seek a method that can achieve an equivalent ef-

fect by applying some filter to the raw input image. More specifi-
cally, we apply a linear filter h(p) to (the ROI of) the input image
I(p) and then warp it by H1 to compare against the corrected
(low-resolution) template I∗l (p∗) ∗ f ′(p∗; ĤA). The filtered input
image I(p) ∗ h(p) can be modeled as

I′(p) ∗ h(p) = I∗(H−1
0 p) ∗ f (p) ∗ h(p). (10)

Thus, we have only to choose h such that this coincides with the
corrected template.

As in the case of the filter f ′ for blurring the template, we
choose for h a two-dimensional Gaussian function

h(p) ∝ exp

(
−1

2
p�Φ−1

h p
)
, (11)

where Φh is a 2 × 2 matrix that we want to determine (Note that
p is used here as inhomogeneous coordinates p = [px, py]�). The
two filters on the right hand side of Eq. (10) are both Gaussian,
and thus it is equivalent to apply the following single Gaussian
filter to I∗(H−1

0 p):

( f ⊗ h) ∝ exp

(
−1

2
p�(σ2

f I +Φh)−1p
)
. (12)

By using this, the image obtained by warping the right hand side
of Eq. (10) with H1 is given by

I∗(H−1
0 H1p∗) ∗ ( f ⊗ h)(H1p∗). (13)

Adopting similar approximations used in Ref. [8], ( f ⊗ h)(H1p∗)
reduces to

( f ⊗ h)(H1p∗) ∝ exp

(
−1

2
p∗�Ĥ�A (σ2

f I +Φh)−1ĤAp∗
)
.

Similarly, the two filters on the right hand side of Eq. (8) can be
merged to the following single Gaussian filter I∗(H−1

0 H1p∗).

( f ⊗ g)(p∗) ∝ exp

(
−1

2
p∗�

(
σ2
gI + σ

2
f (Ĥ

�
A ĤA)−1

)−1
p∗

)
.

Then, we determine h (i.e.,Φh) so that the two combined filters
( f ⊗ h) and ( f ⊗ g) coincide with each other. Some calculation
leads to

h(p; ĤA) ∝ exp

⎛⎜⎜⎜⎜⎝− 1
2σ2
g

p�Ĥ−�A Ĥ−1
A p

⎞⎟⎟⎟⎟⎠ . (14)

Finally, the objective function becomes

J(x) =
∑

i

[Il(ĤH(x)p∗i ) − I∗l (p∗i ) ∗ f ′(p∗i ; ĤA)
]2
, (15)

where

Il(p) = I(p) ∗ h(p; ĤA). (16)

Note that for each input image, ĤA is determined at the beginning
of iterative minimization and is fixed during the iterations.

4. Experimental Results

We conducted several experiments to examine the performance
of our method. We used a Grasshopper camera of Point Grey Re-
search Inc. and a PC equipped with a GTX580 GPU of nVidia.
The input images are 640 × 480 pixels and we choose the size of
templates to be 192 × 192 pixels. By using the GPU for the non-
linear minimization as well as the two convolutions, tracking can
be performed in frame rate of 30 Hz.

Figure 1 shows how the two blurring filters f ′(p∗; ĤA) of
Eq. (6) and h(p; ĤA) of Eq. (11) vary during tracking. It is seen
from this that the two filters are complementary with each other,
corresponding to the fact that their covariance matrices are the in-
verse of each other: (Ĥ�A ĤA)−1 = Ĥ−�A Ĥ−1

A . Because of this mech-
anism, the input image and the template will never be blurred in
such a way that information is lost.

Figure 2 shows the results of tracking a plane moving between
a distant position and a close position to the camera a few times
repeatedly. It shows that although there is no clear difference in
accuracy between the two methods when both can track the target,
Ito et al.’s method failed tracking twice (the red dots are missing),
when the plane is closer to the camera. Figure 3 shows several
snapshots of the same tracking results. When the plane is distant,
the warped input image (the 2nd row) has the lowest resolution.
When it is lower than the template (the leftmost column), Ito et
al.’s method applies a blurring filter to the template, which makes
the appearances of the warped input and the template similar. As
the plane comes closer to the camera, its resolution increases (the
second and third columns). Their method managed to deal with
this increasing resolution by reducing the amount of the template
blurring. However, when the plane comes more closer (the fourth

I

f ′

h

Fig. 1 The two filters f ′(p∗; ĤA) and h(p; ĤA) (shown in 51× 51 pixel size)
work in a complementary way during tracking.

Fig. 2 Temporal variations in the planar poses computed from the results
of the proposed method (green dots) and of Ito et al.’s method (red
dots). The pose estimated from the images of a chessboard is also
shown (blue dots). The vertical axis indicates a component of the
three-vector representing the rotational component of planar pose as
the angle-axis representation.
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Fig. 3 Snapshots of the tracking results of Fig. 2. From left to right columns, 420, 480, 525, 580, 581,
and 625-th frame. Colored axes are overlaid into the input images along with the tracked region.
The upper, smaller ones represent the planar poses estimated by the chessboard. The lower ones
represent those computed from the estimated homographies.
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Fig. 4 Snapshots of tracking when using another template. Ito et al.’s method failed tracking from the
fifth column, whereas ours can continue tracking.

column), it cannot reduce the blur anymore, resulting in that there
is a significant difference between the warped input and the tem-
plate. Their method could not continue tracking beyond this point
(the fifth and sixth columns). On the other hand, the proposed
method also applies the blurring filter to the input images, whose
size and shape are controlled in a complementary way to the tem-
plate filter. It can increase the blur of the input image filter when-
ever that of the template filter is minimized, resulting in that it
can continue tracking.

We conducted experiments using a variety of templates, yield-
ing similar results. An example is shown in Fig. 4.

5. Summary

We have described a method for planar tracking that can
achieve improved accuracy by resolving the resolution inconsis-
tencies between the input images and the template. It extends Ito
et al.’s method, which considers only one half of the inconsis-
tencies, to be able to deal with the other half such that the input

images are of higher resolution than the template. It can deal with
both types of resolution inconsistencies in a unified manner. The
experimental results validate the performance of the proposed ap-
proach.
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