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Abstract: MR Image fusion is desired in various image-guide breast surgeries. However it often suffers from the
difficulty on dealing with large deformation of breast. This paper presents a novel method for efficiently modeling
and inferring the physical parameters, including gravity, Young’s modulus, Poisson’s ratio, etc, which are important
elements for handling the biomechanical deformations of breast with finite element model. Our method consists of
two major steps: 1) deformation modeling and 2) non-rigid registration. The former builds a deformable implicit
polynomial (DIP) model to encode the physical parameters according to deformation. The latter fast registers the prior
DIP to the online breast image such that the image fusion can be achieved. Experimental results demonstrate the good
performance of our method.
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1. Introduction

Magnetic Resonance (MR) images of breast captured in differ-
ent poses of patients pre- or operatively are widely used in clin-
ics. To the end of breast diagnosis or image guidance of breast
surgery, these images are often desired to fuse together to pro-
vide rich information. However, the appearance of breast images
vary in large scale due to deformation of soft body. For example,
Fig. 1 (a) and (b) show two MRI images taken from one patient
by prone and supine postures respectively, but they look very dif-
ferent on shape boundary. Furthermore such supine MRI images
are commonly with low image quality that they are difficult to
be used for detecting breast malignancies (compare the manually
labeled circle markers in Fig. 1 (a) and (b)).

To complete the image fusion task, an effective non-rigid im-
age registration method is required. For example, the image in
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Fig. 1 Fusion of MR images captured by different poses of patient: (a)
prone and (b) supine. (c) deformed image of (a). (d) image fusion of
(b) and (c).

Fig. 1 (a) can be first deformed to the image shown in (c), and
then (c) can be fused with (b) as the result shown in (d).

Plenty of image-based methods have been developed, e.g., one
of the most classical mothers is proposed by Rueckert et al. in
Ref. [7], where breast motion is defined by transformation of
global affine and local free-form deformation (FFD), and mu-
tual information is used as voxel-based similarity measurement.
More comprehensive survey is given by Guo et al. in Ref. [3], e.g.,
intensity-based and feature-based methods are common types for
breast image registration which warp image pairs by maximizing
the similarities defined on intensities or image features. How-
ever these approaches do not make the image deformation faith
to the physical reality of breast deformation, so that the place of
malignancies cannot be guaranteed to match together. Especially
failure cases often happen when dealing with the large deforma-
tion or there are few overlaps of consistent image intensities or
features.

Physics-based methods guarantee the truth of physical defor-
mation, e.g., Carter et al. [2], [5], [6] consider the factor of grav-
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Fig. 2 Method overview.

ity of breast and successfully achieve the registration using FEM
(Finite Element Method). However, in the case for estimating
physics-based parameters, it is too time-consuming, since large
number of hypothetical simulations generated by FEM are nec-
essary to be explored. To speed up FEM model, Hu et al. [4]
adopted statistical motion model (SMM) representing the FEM-
simulated models for prostate gland image registration. However,
unlike FEM, SMM misses the physical parameters, such as grav-
ity, Young’s modulus and Poisson’s ratio, which would be very
helpful for physically and volumetrically simulating the defor-
mation of breast. Furthermore these patient-specific physical pa-
rameters can be reused for diagnosis with simulation despite the
boundary conditions changed in future.

We propose a novel image fusion technique for breast MRI
image by fast estimating the physical parameters that can drive
a physical deformation (e.g., Fig. 1 (c)) and fuse the deformed
image to operative image (e.g., Fig. 1 (d)). As shown in Fig. 2,
our method consists of two processes: offline modeling and on-

line estimation and registration. In off-line modeling, we model
the physical deformation of breast by a compact and continuous
model termed as: deformable implicit polynomial (DIP) model,
which encodes physical parameters previously simulated by FEM
from a preoperative image (e.g., prone image). In online image
fusion, a high-speed registration between prior DIP and an opera-
tive breast image (e.g., supine image) is performed. As result, the
appropriate physics-based parameters can be estimated out and
thus serves for physics-based image fusion.

Over traditional methods, three major contributions of this pa-
per are: 1) a new efficient model is proposed for representing
deformation; 2) a modeling technique is proposed for obtaining
compact DIP models; 3) a solution for fast non-rigid registration
using DIP is proposed.

2. Offline Modeling

As shown in Fig. 2 left part, the first step of our approach, of-
fline learning, is to model the deformation physically simulated
by FEM, after the preoperative prone MR image data is captured.
Then a compact DIP is build to fit the surface data extracted from
FEM models.

2.1 FEM Simulation
Given a patient-specific prone breast image, we first build a

large number of 3D deformation data by physical simulation us-
ing FEM [2]. Each data is calculated according to FEM simula-
tion under a hypothesis of parameter settings, e.g., setting gravity,
Young’s Modulus and Poisson’s ratio with certain values. Sec-
ondly only the 3D points on surface of each FEM model are
used for modeling. The data set can be viewed as N k-dimension
data points {xi}N1 , each point xi is a k-dimension vector combin-
ing a 3D point and its corresponding physical parameters, e.g.,
xi = (x y z g p), where (x, y, z) is the coordinate of 3D point, and
g and p are Young’s Modulus and Poisson’s ration respectively.

2.2 Deformable Implicit Polynomial Model
Then our DIP representing dataset {xi}N1 can be defined in a

multivariate implicit polynomial form. For example, a 5-variable
DIP of degree n is denoted by:

fn(x) =
∑

0≤i, j,k,l,m;i+ j+k+l+m≤n

ai jklmxiy jzkgl pm

=

K∑
c=1

acmc(x), (1)

where ai jklm is the polynomial coefficient corresponding to mono-
mial xiy jzkgl pm. This linear representation can be reordered by
index c in lexicographical order. Then mc is the c-th monomial of
polynomial.

2.3 DIP Fitting
Fitting a DIP to dataset {xi}N1 can be viewed as to find an ap-

propriate polynomial f (x), of which the zero set {x| fn(x) = 0}
can “best” represent the data set. This problem can be solved by
linear least-squares optimization as

MTMa = MTb, (2)

where M is the matrix of monomial whose c-th column mc is
(mc(x1),mc(x2), . . . ,mc(xN))T; a is unknown coefficient vector;
and b is a non-zero vector that is obtained by numerical stabi-
lization proposed by Blane et al. [1].

Then we adopt QR decomposition proposed by Zheng et al. [9]
to make: M = QR, where Q is an orthonormal matrix and R is
an upper triangular matrix. Then Eq. (2) can be derived to be an
upper-triangular linear system of equations as:

RTQTQRa = RTQTb → Ra = QTb︸︷︷︸
b̃

. (3)
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Note, it namely means that the linear basis (the columns of
M) {m1,m2, · · · ,mc} are orthonormalized to orthonormal basis
{q1,q2, · · · ,qc} (the columns of Q).

In this paper we employ the incremental fitting scheme
also proposed by Zheng et al., [9]. That is, Eq. (2) will be
solved incrementally by assuming the number of M’s columns
{m1,m2, · · · ,mc} increases one by one at each step. By QR de-
composition as carried out in Eq. (3), equivalently Eq. (2) will be
solved incrementally as:

R1a1 = b̃1 , . . . ,Rcac = b̃c, (c = 1, 2, . . .) (4)

where the dimension of the upper-triangular linear system at each
step is larger than the precede step by one. This iteration will be
terminated, once the desired fitting accuracy is satisfied.

2.4 Compact Fitting
In our previous study, implicit polynomial has the good prop-

erty of fewer coefficients than other function based representa-
tion, such as splines, (see Ref. [9]). While modeling a high di-
mensional DIP however, it still faces the challenge that the coef-
ficient space should be huge and thus suffers from high compu-
tational cost. For example, if the variable x of Eq. (1) is a 7-D
vector for a polynomial of 8th degree, there needs 6, 435 coeffi-
cients need to be solved, which is a big challenge for a modern
computer.

In this paper, we propose a novel method for pursuing a com-
pact representation (with sparse coefficients), even if the input is
a high-dimension fitting dataset. To this end, we modify the in-
cremental scheme in Eq. (4) by removing the columns in mc com-
panied with coefficients ac that have little contribution on fitting.
That is, we check fitting error (defined later) at each incremen-
tal step in Eq. (4), and then do not take the coefficients account
into calculation if the fitting error varies too little. Our method is
based on two following theorems:
Theorem 1 At the c-th step of incremental scheme Eq. (4), if the

last (c-th) diagonal element of matrix Ri satisfies: rc = 0, then

matrix M in Eq. (2) is singular.

proof: Suppose {m1,m2, · · · ,mc} are the columns of M. Accord-
ing to the orthogonalization theory (also see Gram-Schmidt pro-
cess in Ref. [9]), rc =‖ mc−∑c−1

j=1 r jcq j ‖, where {q1,q2, · · · , qc−1}
are the orthonormalized vectors of {m1,m2, · · · ,mc−1}. Thus
if rc = 0, then mc =

∑c−1
j=1 r jcq j, i.e., mc can be linearly

represented by vectors {q1,q2, · · · , qc−1}, and equivalently by
{m1,m2, · · · ,mc−1}. �
Theorem 2 At the c-th step of incremental scheme, if the last entry

of b̃c satisfies: b̃c = 0, then the current step has no contribution

for reducing least squared errors.

proof: Suppose fitting error is defined as Least Squares (LS) er-
ror at the c-th step: Ec =‖ Mcac − b ‖2, then by substituting
Mc = QcRc, we can obtain:

Ec = aT
c RT

c QT
c QcRcac − 2aT

c RT
c QT

c b + bTb

= − ‖ b̃c ‖2 + ‖ b ‖2 . (5)

Then if b̃c = 0, it has no effect on ‖ b̃c ‖ and thus has no contri-
bution to Ei compared to Ei−1. �

Theorem 1 implies the fact that once rc = 0, the column mc of
M will be collinear to the preceding columns {m1,m2, · · · ,mc−1}
which is thus meaningless if orthogonalized. Theorem 2 implies
the fact that once the last element of b̃c, b̃c, is close to zero, there
is little contribution for reducing the LS errors and thus the cur-
rent incremental step has little contribution to overall fitting.

Based on these two observations, we define a criterion for de-
tecting the trivial parameters as: rc × b2

c < T , suppose T is a
certain threshold. That is, if this criterion is satisfied, column mi

will be discarded and the dimension of Eq. (4) will not grow up.
As result, this elimination makes the upper-triangular linear sys-
tem in Eq. (4) always compact, such that we can obtain a DIP
with compact coefficient set.

3. Online Estimation and Registration

As illustrated in Fig. 2 right part, given a DIP prior and the
input patient-specific supine image, the image fusion will be
achieved by non-rigid registration between DIP and 3D point set
{bi}N1 that should be boundary points of breast (of the supine im-
age). To this end, we propose to perform rigid and non-rigid reg-
istration alternatively.

We formulate the registration problem as an energy minimiza-
tion problem:

{prigid, pphysic} = arg min
p1 ,p2

E(p1, p2). (6)

where p1 ∈ R6 consists of six parameters for rigid transforma-
tion, and p2 consists of the physics-based parameters for non-
rigid transformation.

3.1 Rigid Registration
Rigid registration starts by fixing p2 with constant values. To

minimize Eq. (6), point set {bi} will be rigidly driven to DIP in
defined algebraic distance field in a region Ω as:

{prigid} = arg min
p1

∫
Ω

dist(T (p1, bi), fn)dΩ, (7)

where T (p1,bi) returns the rigidly transformed points of bi ac-
cording to parameter p1; function dist(·) means the distance from
the point bi to the zero set of fn defined as (see Ref. [8]):

dist(bi, fn) =
fn(bi)2

‖ �p1 fn(bi) ‖2 ,∀x ∈ Ω, (8)

where �p1 fn(x) = ( ∂ f
∂p1

1
, ∂ f
∂p2

1
, . . . , ∂ f

∂pn
1
) (suppose p1 =

(p1
1, p

2
1, . . . , p

n
1)). To minimize Eq. (7), we employ the method

proposed by Zheng et al. [8], which registers a rigid IP model
to discrete point set. Then rigid registration will be replaced by
non-rigid registration once energy function in Eq. (7) converges
slowly.

3.2 Non-rigid Registration
Non-rigid registration is performed under fixing the rigid trans-

formation parameter p1. Then DIP non-rigidly deforms to fit the
point set {bi}N1 by minimizing energy.

{pphysic} = arg min
p2

∫
Ω

dist(bi, f (p2))dΩ, (9)
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where distance function is similarly defined as: dist(bi, fn) =
f 2
n (bi)

‖�p2 fn(bi)‖2 , where �p2 f = ( ∂ f
∂p1

2
, ∂ f
∂p2

2
, . . . , ∂ f

∂pn
2
) (suppose p2 =

(p1
2, p

2
2, . . . , p

n
2)). The minimization of Eq. (9) can be viewed as

a general nonlinear minimization problem and we use the stan-
dard Newton method for solving it.

4. Experimental Results

Phantom and clinical data are employed for evaluation.

4.1 Breast Phantom Data
Data acquisition and modeling The first validation is based
on prone-supine MR image registration, using breast phantom
CIRS-051 (http://www.cirsinc.com/) made of water-based poly-
mer shown in Fig. 3 (a). First the prone MR image is taken
by setting the MR shooting range as 300 × 300 × 144 mm3

(Fig. 3 (b)). We build the FEM model using the mesh of 9,422
hexahedrons with size of 5 × 5 × 5 mm3 for each hexahe-
dron, as shown in Fig. 3 (c). Then we perform 36 simula-
tions of FEM by setting the range of Young’s Modulus and
Poisson’s Ratio as: {2000, 2400, 2800, 3200, 3600, 4000} [pa] and
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5} respectively, since Young’s Modulus
and Poisson’s Ratio are two of most important parameters for
biomechanical deformation of breast. We also assume the den-
sity of the phantom is 1 g/cm3.

Table 1 shows the modeling result of our method compared to
the method [9]. It shows that 1) our method obtained the com-

Fig. 3 (a) CIRS-051 phantom; (b) prone MR image of (a); (c) and (d) sim-
ulated data using FEM (e) Supine image; (f) Rigid registration result
between (b) and (e); (g) our registration result.

Table 1 Comparison between the method of [9] and our method. Columns from left to right: if coefficient
reduction used, number of coefficients, learning error (MSE), and the resulted Young’s Modulus
& Poisson’s Ratio, registration error (MSE) and running time.

Off-line learning On-line estimation & registration
with CR # of Coef. learn. E. (mm) Y. (pa) & P. reg. E. (mm) time(s)

method # 1 [9] NO 462 0.715 (2003, 0.092) 0.903 10.27

method # 2 [9] NO 102 13.7 NG NG NG

our method YES 102 0.722 (2006, 0.089) 0.904 2.31

Fig. 5 (a) Clinical prone MR images and (b) supine MR images; (c) Simulated supine images from (a)
using estimated parameters; (d) Image fusion of (b) and (c).

pact DIP with 102 coefficients without losing learning accuracy,
compared to the result of method #1 using full 462 coefficients re-
quired for 6-degree IP; 2) however the result of method #2, with
same number of coefficients to ours, lost too much accuracy to
fail for registration.
Registration and estimation After Obtained the DIP, first we test
the registration using a synthetic data as the target image with
Young’s Modulus and Poisson’s Ratio of {2000 pa, 0.1}. Then
the DIP is set with same random positions and physics-based pa-
rameters of {4000 pa, 0.5}. Table 1 shows the estimation result.
Note method #2 failed to perform this registration. Figure 4 il-
lustrates the registration process. Figure 3 (e)-(g) also shows the
prone-supine image registration result using our learned DIP.

4.2 Clinical Data
The second evaluation is based on the prone-supine breast clin-

ical data captured from patients, see Fig. 5. The MR acquisition
ranges are set as: 350×250×215 mm3 and 380×300×125 mm3

(slice interval is 1.25 mm) for prone and supine images respec-
tively. For evaluating the registration accuracy, we first manually
marked the locations of breast lesion on both prone and supine
images, and assume that for images of same patient the marked
locations are completely coincided in the registered images. Then
we check the error of the marked lesion location after registration.

To perform registration, we build 24 FEM simulation data

Fig. 4 Registration process consisting of rigid transformation of target (sur-
face model) and non-rigid transformation of DIP (mesh model).
Color illustrates the local distance to yellow mesh.
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Table 2 Evaluation of registration error between lesion position in prone
and in supine.

# Patient # Coef. Young. [Pa] Poisson’s R. Reg. Err. [mm]

1 126 426 0.33 4.341
2 120 475 0.38 10.289
3 137 447 0.12 10.115

for each clinical case by setting range of Young’s Mod-
ulus and Poisson’s Ratio as: {300, 400, 500, 1000} [pa] and
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5} respectively, which are then modeled
by an 8-degree DIP. As results, for each case, the number of
selected coefficients of learned DIP, estimated Young’s Modu-
lus and Poisson’s Ratio, and target (lesion) registration error are
shown in Table 2. Also we simulate the FEM deformation using
the estimated physics-based parameters to perform image fusion
as shown in Fig. 5. The CPU time taken is about 5 seconds for
online registration, however speed effect of Matlab being an in-
terpreted language should be considered. Through the results, we
can observe that, 1) each of the DIP models is compressed sig-
nificantly compared to the full 1,287 coefficients required for an
8-degree IP; 2) even for complex clinical cases, the deformation
occurred in prone-supine images can be accurately simulated us-
ing the estimated physics-based parameters.

5. Discussion and Future Work

The results of this study suggest that the biomechanical de-
formation of breast can be represented by a compact DIP, and
utilized which a high-speed registration can be achieved for real-
time applications. The results demonstrate the potentials for
clinical applications such as image-guided breast diagnoses or
surgery.

However, currently it still suffers from the difficulty on control
of the DIPs, as shown in Table 2, the results of two patients are un-
satisfied for the standard accuracy of medical image registration
(≤ 10 mm errors at tumors). In future research, we plan to explore
several directions: i) Connecting our work to explicit representa-
tion models like mutual information in Ref. [7], and to improve
the similarity measurement; ii) Studying the techniques of locally
controlling the deformation such FFD, and thus to achieve the ac-
curate local registration; iii) Combing more physical cues in FEM
to build more strict physical simulation for obtaining training data
of deformation.
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