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Sparse Estimation of Spike-Triggered Average

1 1 1,3

Sumvper Yorsukura®l  Tosaiakr Omor?  Kenot Nagatal  Masato Okapal:

Abstract: The spike-triggered average (STA) and phase response curve characterize the response properties of sin-
gle neurons. A recent theoretical study proposed a method to estimate the phase response curve by means of linear
regression with Fourier basis functions. In this study, we propose a method to estimate the STA by means of sparse
linear regression with Fourier and polynomial basis functions. In the proposed method, we use sparse estimation with
L1 regularization to extract substantial basis functions for the STA. We show using simulated data that the proposed
method achieves more accurate estimation of the STA than the simple trial average used in conventional method.

Keywords: spike-triggered average, linear regression, L1 regularization, model selection, curve fitting

estimate the STA by linear regression.

In this paper, we propose an algorithm to estimate the STA

Neurons are encoders that transform time series of inputs intobased on sparse estimation by using L1 regularization [11], [12],
spikes. Spike-triggered analysis has been used extensively to estif13], [14]. In the proposed method, essential basis functions for
mate the statistical properties of the time-varying inputs inducing the STA are extracted automatically by means of sparse linear
the spikes [1], [2], [3], [4], [5]. In particular, the spike-triggered regression using the L1 regularization. Appropriate basis func-
average (STA), first-order statistics of the spike-triggered analy- tions for estimating the STA are evaluated by applying the pro-
sis, corresponds to an average of time series of inputs that inducgposed method to simulated data obtained using the Morris-Lecar
the spikes. The STA has been used in physiological experimentsmodel [15]. We show using the simulated data that the proposed
to estimate receptive fields in neural systems [6], [7], [8]. method can estimate the STA more accurately than the conven-

To obtain the STA from experimental results, we need to ob- tional method using the simple trial average.
serve a spike train from a specific neuron and calculate an averag
of time series of inputs that induce the spike train. In previous
studies, the STA has been calculated simply as a trial average In this study, we propose an algorithm to estimate the
of inputs inducing a finite number of spikes [9]. However, the suprathreshold STA [9], [16]. Hereafter, we call the suprathresh-
number of observable spikes from a specific neuron is limited in old STA simply the STA. Le¥ (t) be a membrane potential of
physiological experiments. Due to this limitation, the STA cal- a neuron at timé. The neuron is assumed to emit a spike when
culated as the simple trial average is rather noisy, which makes itthe membrane potenti# (t) exceeds a firing threshoM;,. We

1. Introduction

2. Spike-Triggered Average

difficult to obtain the true STA accurately. assume that the neuron receives an input cutr@hias
A recent study proposed a method to estimate phase response
curve (PRC) by using linear regression with Fourier basis func- H(®) =lo+£(0), @)

tions [10]. The PRC is a periodic function that characterizes the wherelo is a constant current ardlt) is a noise current obeying

response properties of single neurons. This method has beeqhe white Gaussian noise with the average 0 and the variafice
shown to accurately estimate the PRC from experimental data'The constant currerig is assumed to be ficiently large to gen-

Since thg STA IIS known rt]o bE plr.oportlonal to .a derlvelitlve of the erate spikes without noise inpaft). As shown inFig. 1, we as-
ER(; 3 |t.wou. d S(;emt atthe :lnearr:egressmn wou dﬂﬁﬁoe sume that the neuron generates spikes attjinfle= 1,2,--- ,K)
tive for estlmgtlng t_ eSTAas W_e as the PRC. Howev.er, the STA by the constant and noise currents. The ST\(r), is defined as
would be a discontinuous function whereas the PRC is a periodic
continuous function. This would make itficult to estimate the i 1 &
STA using linear regression with only Fourier basis functions, Co() = K, K ;g(tk -7, @
and it is unclear what kinds of basis functions are appropriate to B
whereK indicates thenumber of spikesé (t — 1) represents the
Graduate Schoabf Frontier Sciences, The University of Tokyo, 5-1-5, _nO|se current that Come_SbEfore thek-th spike. N-amely,. the STA
Kashiwanoha, Kashiwa, 277-8561, Japan is an average of the noise currér(ty — ) preceding spikes.
Graduate School of Engineering, Kobe University, 1-1, Rokkodai, Although the definition of the STAG, (), assumes an infinite
Nadaku, Kobe, 657-8501, Japan . . o .
number of spikes, we cannot obtain an infinite number of spikes

Brain Science Institute, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-
0198, Japan in physiological experiments. The STA is therefore calculated ap-
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Fig.1 A schematic diagram of the spike-triggered average (STA). A neuron
is assumed to receive the input curré(t) consisting of the constant
currently and the noise curregt(t) and generate spikes at tirttg}.

The STA is defined as the average of the noise cugéqt- 7) pre-
ceding the spike tim# by the intervalr.

proximately with a finite number of spikéé obtained from ex-
perimental and numerical data. We show an example of the STA
calculated as the trial average with the finite number of spikes in
Fig. 2(a). We found that the STA calculated as the trial average is
noisy, and thus it is diicult to calculate the STA accurately using

the conventional method based on the trial average. Hereafter, we

call the STA calculated by the trial average with the finite number
of spikes simply the STA data.

3. Proposed Method

In this section, we propose an algorithm to estimate the STA
with linear regression based on L1 regularization in order to ac-
curately estimate the true STA from noisy STA data.

3.1 Sparse Estimation of the STA based on L1 Regulariza-
tion

We consider a situation in which we obtain the STA data with
N points{(r1,C(r1)),--- , (vn, C (vn))} by physiological experi-
ments. Each value of the STA dafa(r;), is assumed to consist
of the true STACy (1i), and noise. In this study, we propose an
algorithm to estimate the true STy (1), from the STA data by
using linear regression with basis functions.

The true STACy (1), is assumed to be expressed by a linear
combination of basis functior{sfj (T)}, as

Co(m=arfi(m)+---+aufu (1)

M
= > (@),
=1

whereM is the number of basis functions afai,--- ,ay} are
real codficients. We consider a linear regression problem to

3
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Examples of STA data obtained by the type | Morris-Lecar model.
(a) STA data in the case in which the number of spikesis 1.

The STA data is noisy if the number of spikés, is small. (b) STA
data in the case in which the number of spikésjs 1¢. The STA
data converges to the true STA if the number of spikésis sufi-
ciently large. The true STA can be a discontinuous periodic function
sinceCp(0) is not equal taCy(T), as shown in (b). Here the firing
periodT is set to be 1.

Fig. 2

determine the cdBcients{ay,--- ,ay} based on the STA data
{(r1,C(r1)),--- ,(rn,C (7n))} in order to obtain the regression
model of the STA.

If we use an excessive number of basis functions in the linear
regression, we run the risk of overfitting, which would result in
a failed estimation of the true STA since the regression model is
strongly influenced by the noise in such cases. Thus, we need to
extract only essential basis functions to estimate the STA accu-
rately.

In this study, we introduce L1 regularization [11], [12], [13],
[14] in order to extract essential basis functions automatically
based on the STA data. The L1 regularization is defined to deter-
mine the cofficients{ay, - - - , av} S0 as to minimize the following
objective function:



IPSJ SIG Technical Report

N M
E(a,---,av) = Z CT)-Co (Ti))2 + Z/li |aj'
i=1 =1

N

M 2
=Z [C ()= ) ajf (Ti)]
i =1

i=1 j
M

+ > Ailail-
=1

Here, 1; are assumed to be positive constants. The first term of
the objective functiork represents a discrepancy between the re-
gression model and the STA data. The second term is a penalt
term that prevents absolute values of ffi@éents from increas-
ing. By this penalty term, the cﬁ‘ﬁ:ients{aj} for redundant basis
functions are likely to be exactly zero. Thus, essential basis func-

(4)

tions can be extracted using the L1 regularization, and the model

selection can be realized automatically. This kind of estimation
using Eq. (4) is called sparse estimation.

3.2 Design of basis functions and regularization weights

The accuracy of the regression in Eq. (3) is determined by
what kinds of functions we prepare for redundant basis functions
{f1(7),-- -, fm(7)}. Fourier basis functions were used in the linear
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sparse regression using distiently large number of the Fourier
and polynomial basis functions by setting the maximum order of
each kind of basis functiond; and D, to be stficiently large.
The sparse estimation is conducted using the L1 regularization to
extract only essential basis functions for the STA.

The regularization weightg; in Eq. (4) should be determined
in order to perform the L1 regularization. Absolute values of the
coefficients for high-frequency components of the Fourier basis
functions are expected to be relatively small in the true STA. On
the other hand, noise contains large high-frequency components.

))n this study, we propose a method that strongly penalizes ex-

traction of high-frequency components of Fourier basis functions.
For this purpose, we set the regularization weightas

(j-Da (f2<j<Ds+1)
(i-Dr-1)a (if Df+2<j<2D;+1)
1 (otherwisg,

(6)

j =

where 1 is a positive constant. In Eq. (6), the regularization
weights are set to be proportional to the frequency of the Fourier
basis functions. Namely, the regularization weightor k-th or-

der Fourier basis functions cozf2) and sin(zZkr) is set to be

Aj = k. The constant is determined so as to minimize a gener-

regression of the phase response curve (PRC) in a previous studylization error calculated by a cross-validation method.

by Gakn et al. [10]. The PRC describes a phase shift induced by

perturbation given to a periodically firing neuron and character- 4. Results

izes the response properties of single neurons. Since the PRC is
periodic function, the previous study [10] used the Fourier basis
functions.

Ermentrout et al. analytically showed that the STA is propor-
tional to a derivative of the PRC [9]. Therefore, we consider a
regression of the STA using the Fourier basis functions as well
as the PRC. Since a derivative of a continuous function is not al-
ways continuous, the STA, which is proportional to a derivative
of the PRC, can be discontinuous. Actually, as shown in Fig. 2(b),
the STA can be discontinuous sinCg(0) is not equal taCy(T).

If we perform a regression of the STA using only Fourier basis
functions, it is expected that high-frequency components of the

a In this section, we apply the proposed algorithm to STA data
obtained by simulation using a neuron model.

4.1 Morris-Lecar Model
In this study, we used the Morris-Lecar model as a neuron
model [15], [17]. In this model, the dynamics of the membrane
potentialV (t) obey the following diferential equation:
dv(t _
U - Geamo v VO - Ve
—gkw (O (V) - Vi) —gu (V1) - V1)

+1(1). (7)

Fourier basis functions are needed to express the discontinuity ] ) ) .
of the STA, even when the true STA may not include the high- Here, Eq. (7) describes the relationship between ion currents

frequency components.

In this study, we used the Fourier basis functions and polyno-
mial basis functions in order to express the discontinuity of the
STA, as

Dy

Co(r) =ar + Z Ak+1) COS(2knT)
k=1
D¢

+ 2 A(k+Dy+1) SIN(2kT)
k=1

DP
+ Z a(k+2Df+l)Tk, (5)

k=1
where the firing period is set to be 1Dy andD, are the max-
imum order of the Fourier and polynomial basis functions, re-
spectively. Here, it is unclear which order of the Fourier and

and the membrane potential. We describe further details of the
Morris-Lecar model in the Appendix.

Neurons are classified into type | and Il neurons according to
their firing properties [16], [17], [18]. The Morris-Lecar model
can mimic both types by using appropriate parameter settings.
We show the dterence in firing properties between the two in
Fig. 3. For both type | and Il neurons, a neuron fires periodically
if it receives a sfficiently large constant curretg. Firing fre-
guency of the type | neuron is continuous, as shown in Fig. 3(a),
whereas that of the type Il neuron changes discontinuously, as
shown in Fig. 3(b). We apply the proposed method to the STA
data of both type | and Il obtained by the Morris-Lecar model.

4.2 Settings of Numerical Simulations and Sparse Estima-
tion
The STA data is numerically obtained by the Morris-Lecar

polynomial basis functions are needed in advance. We performmodel with the constant and noise currel(td = Iy + £(t). The

© 2013 Information Processing Society of Japan
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Fig. 3 Firing properties of neurons. Firing frequency of type | neuron is T
continuous whereas that of type Il neuron is discontinuous. (b) Resullts for type Il neuron.
Fig. 4 Results of the proposed method applied to noisy STA data that were
. . obtained using the Morris-Lecar model. (a) Results for type | neu-
constant currenl is assumed to be fiiciently large to generate ron. (b) Results for type Il neuron. Dots represent the noisy STA
spikes periodically without noise input. We apply the sparse esti- data calculated by usigg the small number of spikés=( 10° for
. . . . . : type | neuron and = 10> for type Il neuron). The solid line shows
mation algquthm to the S_TA data. In this se(_:tlon’ the _es“matlon a regression model of the STA estimated from the noisy STA data by
of the STA is performed in two ways. The first case is the pro- using the proposed method while the dashed line shows less noisy
posed method, in which the regularization weightare assumed STA data calculated by using afugiently large number of spikes

. o . K = 10 for type | neuron andk = 10’ for type Il neuron).
as in Eqg. (6). In the second case, the regularization weigjhts ( P P )

are set to be constant The value of1 is determined by using  Table 1 The number of the basis functions extracted by the proposed

10-fold cross-validation. method, and the number of all basis functions. Top row shows the
. . number of spikeK used to calculate the STA data. Middle row
We use the STA data calculated using the number of spikes shows the number of both Fourier and polynomial basis functions.
107, 103, 10%, and 16 in type | neuron and the STA data calcu- Bottom row shows the number of the polynomial functions only.
. _—_ .
lated using the number of spikes®1a0*, 1%, and 16 in type Il (a) Results for type | neuron.
neuron. The maximum order of the Fourier basis functidhs, K 17 1P 10 15
is set to be 25 and that of the polynomiBl,, is 50. No .extracted All | 3/101 | 7/101 | 9/101 | 25101
(polynomial) 1/50 1/50 4/50 3/50
4.3 Results of the Proposed Method (b) Results for type Il neuron.
In this section, we show the results of the proposed method. K 1P 17 1P 1F
Namely, we perform sparse estimation with the regularization No. extracted All | 0/101 | 3/101 | 6/101 | 9/101
(polynomial) 0/50 1/50 1/50 2/50

weightsA; obeying Eq. (6). The solid line ifrig. 4(a) shows

the regression model estimated by the proposed method. Here,
the proposed method is applied to the STA data calculated usingFourier basis functions are extracted by strongly penalizing high-
the number of spike& = 10°. We find that the discontinuity ~ frequency components. As discussed above, we see that essential
C(0) # C(T) is expressed in the regression model estimated by basis functions of the STA are extracted and the model selection
the proposed method. Froifable 1(a), we also find that one is accurately realized by the proposed sparse estimation. Figure
polynomial basis function is extracted in addition to Fourier ba- 4(b) and Table 1(b) show estimated results for type Il neuron. We
sis functions. Furthermore, the low-frequency components of thefind that essential basis functions of the STA are extracted in the
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(b) Thegeneralization error in type Il neuron. Fig. 6 Results of L1 regularization in the case whgn= 1. (a) Results
Fig. 5 Generalization error in the proposed method. The proposed method for type | neuron. (b) Results for type Il neuron. Dots represent the
was applied to the STA data obtained by simulation using the Morris- noisy STA data calculated by using the small number of spikes. A
Lecar model. (a) The generalization error in type | neuron. (b) The solid line is the regression model of the STA estimated by L1 regu-
generalization error in type Il neuron. The horizontal axis represents larization from the noisy STA data. A dash_e{j line represents the less
the number of spike4, and the vertical axis represents the general- noisy STA data calculated by using the suiéintly large number of
ization error. Even when the number of spikes used in the proposed spikes.
method was only ten percent of that used in the conventional method, ) o
the proposed method had a similar performance to the conventional Table 2 The number of extracted basis functions in the casg ef 4, and
method. the number of all basis functions.
(a) Results for type | neuron.
K 107 10° 10° 10°
No. extracted/ All 1/101 | 16/101 | 27/101 | 44/101
(polynomial) 0/50 0/50 1/50 5/50
case of type Il neuron as in the case of type | neuron. (b) Resultsfor type Il neuron.
Next, we evaluate the discrepancy between the conventional K 10 107 100 10
method using the simple trial average and the proposed method. No. extracted/ All | 4/101 | 19/101 | 19/101 | 47/101
(polynomial) 0/50 1/50 1/50 1/50

We evaluate the generalization error calculated by the root mean
square error between the target STA data and the regression
model. The target STA data corresponds to the STA data with 4.4 Caseof Constant Regularization Weights
the sufitiently large number of spikes. The number of spikes of  |n this section, we consider a case in which all the regulariza-
the target STA data is set to ke = 10° for type I neuron and  tion weights; for both Fourier and polynomial basis functions
K = 10 for type Il neuron. are constant valug, not dependent of. We show the results

As shown inFig. 5, the discrepancy of the proposed method of this case irFig. 6 andTable 2. As shown in Fig. 6, the high-
using the STA data with the number of spikess similar to that  frequency components of the Fourier basis functions are extracted
of the conventional method using the STA data with the number due to noise in the STA data, and the regression model is too
of spikes 1&. From these results, we find that even when the wayy. The polynomial functions arefficult to extract, as shown
number of spikes used in the proposed method is only ten percenin Taple 2, since the discontinuitg(0) # C(T), is intended to be
of that used in the conventional method, the proposed method haCbxpressed by the high_frequency Components of the Fourier basis
a similar performance to the conventional method. functions, not the polynomial basis functions. Thus, we fail to
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extract only low-frequency components and the regression model lectively Driven by Differential Stimulus FeatureNeural Comput.
is strongly influenced by the noise. Vol. 20, No. 10, pp. 2418-2440 (2008).
As discussed above, the proposed methodfextve for esti- )
mating the true STA from the experimental STA data in the case APpendix
of §4.3. On the other hand, it isfiicult to extract important com- A1 Morris-Lecar Model

ponents in the case §#.4.
The Morris-Lecar model is a system obeying the following

5. Conclusion equation:

In this paper, we proposed an algorithm to estimate the STA dv (1) _
using linear regression. We introduced sparse estimation using Tdat —gcame (V (1) (V (1) ~ Vea)
L1 regularization to estimate the STA and employed Fourier ba- — gxw @) (V () = Vk)
sis functions and polynomial basis functions in the linear regres- _
sion. Using simulated data obtained by the Morris-Lecar model, —o VOV 1O, A1)
we have shown that extraction of the basis functions with high dw(®) _ we (VD) - w(t), (A.2)
generalization performance can be achieved by penalizing the ex- dt 7w (V(©)
traction of high-frequency components of the Fourier basis func- my (V (1)) = 0‘5{1 + tanh(M)}, (A.3)
tions. We have also shown that even when the number of spikes 2
used in the proposed method is only ten percent of that used in weo (V (1)) = 0.5{1 + tanh(m)}, (A.4)
the conventional method, the proposed method has a similar per- Va
formance to the conventional method. 7, (V (1) = % (A.5)

cosh(¥Q%)
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