
fマルチメディア通信と分散処理ワークショップJ 平成17年 11月

Software Structures for Updating Mobi1e Phone So合ware
Satoshi Mii Ryozo Kiyohara

Mitsubishi Electric Corp. Information Technology R&D Center

The rapid growth qρnobile phone sゆ叩resometimes lead旨tothe necessity of the sゆvarerevision ev.en after
the sh伊ment.To lighten theそffectlずthisproblem. OTA (over-the-air) update services have been provided
recently. It is essentialto shorten the time required for update services. and update time largely depends on the
characteristics of mobile phones such as /ow data tranゆrspeed and lIsage of NOR Flash ROM
In this paper， we introduce a software structure that isφctive for the redllction of the update time. This
software structure is based on the following idea: divide components of sofi仰'areinto modu/es and set each
module independent from other modu/es. 防 alsoshow宅砕ctsof this software structure and introduce a wのto
decide the appropriate number ザmodu/es.

1 Introduction
Recently， as the amount ofmobi1e phone so食warehぉ
been increased， sometimes bugs are reported after由e
phone has been deployed， and manufacturers or
carriers are urged to provide upd回eservices. To
improve the service to mobile phone users and lower
cos包， update services which甘副首ferupdate data
over-the-air (OTA) are emerging [9]. To provide an
OTA update service， it is essential to shorten update
time so as to satisfy users.
Update time mainly consists of download time and
install time. It is obvious that a “differential update"
technique can make both download and install time
short. Here， differential update means that we use
differences between two versions of software， or
executables，ぉ update data. We also call data
representing differences "delta data".
Download time depends on the size of由e
transferred data and data transfer speed. Since da胞
仕組sferspeed in wireless communication networks is
not fast enough to transfer large amounts of data， it is
important to make the size of the transferred data， or
delta data， as smallぉ possible.There are many studies
on algorithms that make the size of the delta data
small [1][8]. But there is no guarantee to make the
delta data always small if two versions of executables
differ considerably合omeach other. So， we must
prepare executables where any kind of update includes
a small change only.
Install time depends on how many sectors to be
er部edrather than how many bytes are changed， since
most mobile phones use NOR Flash ROM to store
executables. Accordingly， we must prepare
executables where any kind of update induces changes
in Iimited areas only.
Thus， a key to shorten update time of an OTA
update service is to prep釘eexecutables where updates
cause small changes in Iimited areas. To construct
such executables， we introduce the idea of "module
structure" and show how to build an executable
according to a module structure. We also show effects
of adopting a module structure and introduce a method
to determine the appropriate p訂副neter that
characterizes a module structure.

2 Related Works
In most differential update techniques， we represent
delta da旬ぉ acombination of“copy" commands and
“add" commands [7]. In this approach， a key to reduce
the delta data size is in bo出 findingas much ∞py
commands ぉ possible and encoding commands
efficiently. For example， zdelta [8] utilizes the zlib
compression Iibrary [4] to fulfill the above
requirements， and shows good performance on曲e
delta da也 size.Other than由民 thereare additional
techniques specializing in software updates. These
techniques take into account platform-dependent
information， such as symbol references [勾 or問gister
assignments [6].
As described above， there are m釦lystudies on size
reduction of the delta data. Thus， we can shorten
download time using these techniques. But there are
免w studies that concentrate on install time or
e節ciency.For ex剖nple，a data structure is introduced
to handle insert and delete oper剖ionsefficiently [3]，
but it is not suitable for storing executables in NOR
Flash ROM.
In由ispaper， we introduce a module structure to
reduce install time. We note由atthe module structure
is also meaningful to reduce the delta da旬 size，or
download time.

3 Overview of Module Structure

3.1 Premise
As a program loading mechanism， we assume a
mechanism as follows:
(1) AIl symbol references are statically resolved，
(2) Each program in the executable form is executed
directly on NOR Flash ROM.

3.2 Outline ofModule S甘uc制re
We explain an outline of the module structure in this
section. We also show an image of the module
structure in Figure 1.

3.2.1 Fixation ofProgram Al'ocation
As programs are written into NOR Flash ROM， we
must rewrite the whole program even if the content
does not change and only the aJlocation changes. Ifwe

-60一

allocate all programs adjacent to each other， any
change in the size of one program causes a rewriting
of all programs allocated behind it. So， it is preferable
to allocate each program on a fixed address to reduce
unnecessary re-allocation. But if the number of
programs is large， it becomes difficult to manage the
allocation of all the programs.
So we propose to manage the allocation in a unit
called "module". Each module consists of one or more
programs， and we fix the order of programs in each
module. We also fix the start address of each module
and allocate programs in their order. To fix the
allocation of all modules， we set a gap zone between
each pair of adjacent modules.
By managing allocation of programs in the unit of
the module， we can reduce negative e宵ectson install
time caused by changes in program size. But there is
another problem in shortening the install time. That is
the symbol references across different modules.
Assume that one program is corrected and the
address of a function in出atprogram changes. Then，
most of the references that refer to the function also
change. This means that one correction in a program
may cause changes in not only the module to which
the program belongs but also other modules. In this
case， we have to rewrite many sectors and so we need
a long install time. We also need a long download time
because changes are spread throughout the whole
executable and the size of the delta data becomes
large.
To avoid the e宵ectsof symbol references， we
introduce another fea加reof the module structure
below.

3.2.2 Function References
To resolve function. references， we set a "vector table"
in each module. A vector table is a set of vectors，
consisting of br飢 chinstructions to global functions in
the module. To resolve a function reference across two
modules， we let the reference refer to the vector that
indicates the target function rather曲卸 thetarget
function itself (Figure 2). By forcing the address of
each vector to be fixed， address changes of global
functions in one module do not a宵ectreferences in
o出ermodules.
We do not apply vector jumps to function references
resolved inside the same module. This rule is based on
two reasonsおおllows:
(1) Vector jumps cause overhead in execution time，
(2) Programs in the same module tend to be allocated
in the same sector， so install time does not
increase so much without vector jumps.

3.2.3 Data References
As for data references， we cannot apply any ideas Iike
a vector table because of

Aash ROM RAM
Vector table

Q~ta of P，.ogf'a~ 1 h
Data of Program2
Data of Prowam3

Code of Program 1
Code of Program2

Code of Program3

J

，

J

Data of Progrョml

Data of Program2
Data of Program3

，

。dule

e

n

o

z

nv
a

G

ロ

，r

，r

，，，
F

/恥
U
f

斗
J

，r
'
a
'
'
A
，，，

'
'
'
'
a
r

Figure 1: Allocation of programs

reference This reference does not change

funcA(); Module1
(not changed)

Vector table
of Module 2
(何xed)

funcA()ーー
{今

target function

address move

Module2
(changed)

iBug Fix)

Figure 2: Vector table

separated from the code in the module (Figure 1).
Ifwe have to treat data references strictly， changing
all global data references across two modules via
functions is one solution. But it is not practical
because we must correct many source files. It also
creates overhead in execution time.

3.3 Executable Construction
A procedure to construct an executable according to
the module structure is divided into two phases， initial
phase and update phぉe. We have proven this
procedure using GNU compiler collection and binary
utilities.

3.3.1 Initial Phase
The initial ph出 econstructs the initial executables. The
initial phase has five steps and each step is ca汀iedout
for each module simultaneously.
(1) Compile
Compile each program without resolving symbol
references.
(2) Temporary link
Link compiled programs with a link script without
resolving symbol references. and generate a
temporary module. The Iink script describes the
allocation， and we confirm addresses of global

-61-

functions and da旬 inthis process. We also set gap
zonesin血isstep.
(3) Vector table generation
Extract global functions合om曲etemporary module
and build a vector table. Each vector table is written
in assembly language and then assembled.
(4) Symbol file generation
Extract global data合omthe temporary module and
write由eirsymbol names and addresses into a
symbol file， which is written in a format of link
script. Also write the symbol name of each global
function and address of曲ecorresponding vector.
(5) Final Link
Link the temporary module with the vector table
and symbol files of 0由ermodules. In this step， we
resolve all symbol references and generate a final
executable for each module.

3.3.2 Update Phase
Update phase is伺 πiedout whenever updates are
required. Basically，出isphase is applied to coπ'ected
modules only.
(1) Recompile
Compile corrected programs without resolving
symbol references.
(2) Temporary link
(3) Vector table generation
Make a vector table inheriting the address of each
vector合omthe vector table of the previous version.
(4) Symbol file generation
1 f the address of a global data is ch加 ged，出eupd剖e
phase has to be carried out for modules that are not
corrected.
(5) Finallink

4 Estimation of U pdate Time
The main effect of the module structure is白紙wecan
shorten the upda旬time.Here， we roughly estimate恥
upd剖etime and show the benefits of the module
structure.

4.1 Definitions and Assumptions
We define system specific fi思lresin Table 1. The
column marked "S剖nple"is explained in Chapter 5.
Then we make assumptions listed below for
simplicity:
• AIl programs are in the same size，
• Programs are assigned to modules equallぁ
• Symbols and references町euniformly distributed
in each program，
・Oneupdate causes a correction in one program，
• Corrections occur in each program at random.
It is necessary to know how many modules are
corrected to estimate the update time. Let x denote the
number of modules and y denote the合equencyof
updates. Then， the average number of corrected
modules under x and y is

U -xYー(x-l)Y
一
勾 xy-I

、.，，，・・且，，.、

4.2 Install Time
Corrections in one module do not always require
erasing and rewriting to all sections in the module， and
the average number of sections to be erased and
rewritten depends on how many times corrections
occ町 inthe module. But for simplicity， we assume
白紙 weneed to erase and rewrite all sections in one
module if at least one correction occurs in the module.
Here， the average number of sectors in each module
is以.So， the average install time is

牝 y)=;Euq 。
4.3 Download Time
Download time depends on the size of the delta da飽
and average data回 nsferspeed. Since da飽 transfer
speed is specific to a service， we discuss 白esize ofthe
delta da'旬 only.

4.3.1 Causes ofDifferences
The size of the delta data mostly depends on how
many bytes and how many par包釘echanged，. and
changes are classified into two typ凶.One is caused by
acoπ'ection itself， like adding one conditional branch.
We call this kind of change“direct ch釦 g句"
Another is caused by symbol references. As we
have explained in Section 3.2， all references in one
module are not changed when the other modules are
corrected. But when corrections happen in their
module itself， some of the references are changed. We
call由iskind of change“indirect changes". In indirect
changes， there are three types of changesおおllows:
(1) Absolute references to moved釘'ea合'omthe
whole module，
(2) Relative re島rencesbetween moved area and fixed
area，
(3) Relative references to another module 合om
moved町ea.
Figure 3 shows an image of these changes. Note曲at
the third type includes vector jumps.
Now， We estimate download time and the size ofthe
delta data under the number of modules x and由e
合equencyof updates y.

4.3.2 Direct Changes
The size of delta data caused by direct changes
depends on how co町ectionsare made. The precise
estimation of the size depends on the actual cases.
Therefore， we define the average delta data size per
correction A as a system specific figure. Then， the size
of the delta da旬 ca凶 edby direct changes Dd(x，y) is

路n

-M v

oe Dd(x，y)=A.μ (3)

-62一

Table 1・Systemspeci日cfigures

Svmbol DescrIptions Samロ1. I
S The number of sectors in NOR Flash RQM 224
E Time to erase and rewritc one sector (in sec) 2.0
Z AVenJRC data transfer spe由d(in byte/s骨，) 12800
p The number of orov.rams in tante software 3411
A The averaJle size of d申Itadata Dcr on白 directchanll:e (in bvte) 10240
G The number of fl:lobal functions 23833
Rir Th唖 numherof relativ由 refercncesinside each orOJZram 13940
Ria The number of absolute refer自ncesinside each orOJ:r昌問 350884
Rar The number of relative rcferences across differ由円tprograms 214980
R88 The numb自ro(absolu t由 referencesacrOS5 differ白ntorol!:ram s 70464

4.3.3 Indirect Changes
ln the case of indirect changes. the delta data sizc

mostly depends on how many references are changed

Here we use add commands and copy commands

introduced in [7) for the estimation. We assume that
the size of each add command is 5 bytes and the size

of each copy command is 4 bytes. Then， for the
number of changed references r. the delta data size is
nearly (5+4)r bytes. Although there are cases that
somc of the copy cornmands are not necessaJγand
some of the add commands can be unified. we ignore

those cases for simplicity
Now we estimate the number of ch加 gedreferences

to calculate the delta data size caused by indirect

changes. There are three types of indirect changes. and
the number of changes for each type largely depends

on where and how many lirnes corrections occur in
each module. Although it is not irnpossible to calculate

the average for each type. we only use the maximum
because calculating the average is rathcr complicated

For the first type of changes. the maximum number
of changed references in one modulc rsl is the number

of absolute 問先日nces where both referring and

referred sides are in the module. Since we assume
Unl自orm distributions of references. the equation

below holds.

For the second one， the maximum number rs] is the
number of rclative references where both sides are in

the module. Taking the numbcr of vectors g/x into
account，

ら2=(R;， +与 RQ，+ g)片 (5)

For the third one. the maximum number r.tJ is the
number of relative references where re白rredsides are

in other modules. and 50

ro' = r 1ーと王1R.oん
.. ¥ p.x J '" I

(6)

Considering the average number of corrected

modulcs u叩 Ihesize of the delta data caused by
indirect changes is

D， (x，y) = 9u秒。.sl+ rx2 + "X3} (7)
In this way. the sizc ofthe delta data is

D(x，y)= D，，(x，y)+ D， (x，y)，
and the download time is

D(x，y)
九(x，y)--y-，

where Z is the averagc data transfer speed

4.4 Total Update Time

(8)

(9)

From Section 4.2 and 4.3， we can obtain the total
(_ P-x _ i I
rs1 ;;;;; I判。+て_.1(山 I/x

rx 11

叩datetime T(x，y)田 describedbelow

(4) r(x，y) = r，(x，y)+九(x，y} (10)

Here (P吋I/Pxmeans the probability that another
program comes to be in the samc module from a

viewpoint of each program

Modulel
(no change)

Module2
(changes)

address
move

relative
reference (3)

absolute
references (1)

Figure 3: Image of indirect change5

It is obvious that a larger number of modules x
results in a shorter update time T(x，y) for every
frequency of updates y. See Chapter 6 and Figure 4
where u凶atetimes are shown for a sample so仕ware.

5 Appropriate Number of Modules
We have shown the advantage of the module structure
in Chapter 4. But there also exists disadvantagcs ofthe

modulc structure. The main disadvantages are

overhead in execution time and memory usage for gap
zones. Il is clear that a larger number of modules
makcs the disadvantages worse
Thus， there is a tradeofT related with the number of
modules. and so il is important to decide thc

appropriate number of modules. In this chapter. we
introduce a method to dctcrminc thc appropriate
number of modules

-63

5.1 Approach
In order to decide the appropriate number of modules，
we adopt an approach部 follows.
(1) Formulate a correlation among the number of
modules， the frequency of updates and upd剖e
time.
(2) Set .permissible amounts on山efrequency of
updates and update time.
(3) Calculate the minimal number of modules th瓜
satisfies the permissible amounts set in (2).
(4) Adopt the number calculated in (3) as由e
appropriate number of modules.

5.2 Method
Since we have already shown the correlation in
Chapter 4， we can describe a method to determine恥

「一一一ー

1000

I U 900

~ 800 、，.，
写 700
~ 600

G) 500

3400

.s 300

.g 200
3100

o
o 20 40 60 80

The number of modules x

Figure 4: Update time

100

appropriate number of modules X according to the ・
permissible frequency of updates Y and 出e・
permissible upd蹴 timeT as follows:

Consideration of program assignments.

Estimation of a correlation between the number
modules and execution time.

(1) Setx:=J，
(2) Calculate TI仇η，
(3) IfT(x，η> T， then set X: =x-l and end，
(4) Set x:=x+ 1 and go back to (2).

6 Example and Evaluation
We show an example of update time estimation using
data合oma certain mobile phone. We show system
specific figures in出e“Sample"column of Table 1.
Among those figures， S， E， P， R;r， R，臨ん円九"Qand G
are obtained from the mobile phone. We determine Z
assuming a 3G service， and A from results of
pre-analysis.
Figure 4 shows the estimation of the total update
time. [n the figure， we plot for four Y values， 1， 10， 30
and 50. We can see that a 1町'genumber of modules
result in a short update time. But for small y， a large
number of modules is not necessarily required. For
example， there is Iittle difference between x=60 and
x=80 for y= 1.
From Figure 4， we can determine the appropriate
number of modules according to the method
introduced in Section 5.2. For example， the
appropri剖enumber of modules is about 50 under the
condition Y=30叩 dT=400.

7 Conclusion and Future Work
[n this pape巳weintroduce a module structure aiming
at the reduction of update time for OTA upd剖e
services. We also introduce a method to build
executables according to the module structure， and
show the effects of the module structure and a method
to determine the appropriate number of modules from
a standpoint of update times.
For future works， we have Iisted topics below:

• Evaluation of the module structure using real
data. This includes not only update time， but also
execution time and memory usage.
・Oetailedestimation of update time.

References
[1] M. Ajtai， et al. Compactly encoding unstructured
input with differential compression. Joumal of
出eACM，49(3):318・367，May 2002.

[2] B. S. Baker， U. Manber and R. Mu出.
Compressing Differences of Executable Code. In
Proceedings of ACM SIGPLAN 1999 Workshop
on Compiler Support for System So食ware
(WCSSS '99). May 1999.

[3] P. Eaton， E. Ong and J. Kubiatowicz. Improving
Bandwidth Efficiency of Peer-to・PeerStorage. In
Proceedings of the Fourth IEEE Intemational
Conference on Peer-to-Peer Computing (IEEE
P2P '04). August 2004.

[4] 1. Gailly and M. Adler. zlib compression Iibrary.
Available at http://www.zlib.netl.

[5] 1. J. Hunt and W. F. Tichy. Delta Algorithms: An
Empirical Analysis. ACM Transactions on
So食ware Engineering and Methodology，
7(2):192・214.April1998.

[6] Y. Okada and K. Terazono. A New Delta
Compression Algorithm Suitable for Program
Update in Embedded Systems. In Proceedings of
the Data Compression Conference (DCC '04).
March 2003.

[7] C. Reichenberger. Delta Storage for Arbitrary
Non-Text Files. In Proceedings of出e3rd
Intemational Workshop on So仕ware
Configuration Management， pages 144-152. June
1991

[8] T. Suel and N. Memon. Algorithms for delta
compression and remote file synchronization. In
Lossless Compression Handbook. Academic
Press.2002.

[9] M. Takeichi， et al. Bug Fix of Mobile Terminal
So合ware using Download OTA. The
Asian-Pacific Network Operations and
Management Symposium. October 2003.

-64-

