[NFAF 4 TREENBOBT—2 V3 v T |

ER17T#E1A

Software Structures for Updating Mobile Phone Software

Satoshi Mii

Ryozo Kiyohara

Mitsubishi Electric Corp. Information Technology R&D Center

The rapid growth of mobile phone software sometimes leads to the necessity of the software revision even after
the shipment. To lighten the effect of this problem, OTA (over-the-air) update services have been provided
recently. It is essential 1o shorten the time required for update services, and update time largely depends on the
characteristics of mobile phones such as low data transfer speed and usage of NOR Flash ROM.

In this paper, we introduce a software structure that is effective for the reduction of the update time. This
software structure is based on the following idea: divide components of software into modules and set each
module independent from other modules. We also show effects of this software structure and introduce a way to

decide the appropriate number of modules.

1 Introduction

Recently, as the amount of mobile phone software has
been increased, sometimes bugs are reported after the
phone has been deployed, and manufacturers or
carriers are urged to provide update services. To
improve the service to mobile phone users and lower
costs, update services which transfer update data
over-the-air (OTA) are emerging [9]. To provide an
OTA update service, it is essential to shorten update
time so as to satisfy users.

Update time mainly consists of download time and
install time. It is obvious that a “differential update”
technique can make both download and install time
short. Here, differential update means that we use
differences between two versions of software, or
executables, as update data. We also call data
representing differences "delta data".

Download time depends on the size of the
transferred data and data transfer speed. Since data
transfer speed in wireless communication networks is
not fast enough to transfer large amounts of data, it is
important to make the size of the transferred data, or
delta data, as small as possible. There are many studies
on algorithms that make the size of the delta data
small [1][8]. But there is no guarantee to make the
delta data always small if two versions of executables
differ considerably from each other. So, we must
prepare executables where any kind of update includes
a small change only.

Install time depends on how many sectors to be
erased rather than how many bytes are changed, since
most mobile phones use NOR Flash ROM to store
executables. Accordingly, we must prepare
executables where any kind of update induces changes
in limited areas only.

Thus, a key to shorten update time of an OTA
update service is to prepare executables where updates
cause small changes in limited areas. To construct
such executables, we introduce the idea of "module
structure” and show how to build an executable
according to a module structure. We also show effects
of adopting a module structure and introduce a method
to determine the appropriate parameter that
characterizes a module structure.

2 Related Works

In most differential update techniques, we represent
delta data as a combination of “copy” commands and
“add” commands [7]. In this approach, a key to reduce
the delta data size is in both finding as much copy
commands as possible and encoding commands
efficiently. For example, zdelta [8] utilizes the z/ib
compression library [4] to fulfill the above
requirements, and shows good performance on the
delta data size. Other than that, there are additional
techniques specializing in software updates. These
techniques take into account platform-dependent
information, such as symbol references [2] or register
assignments [6].

As described above, there are many studies on size
reduction of the delta data. Thus, we can shorten
download time using these techniques. But there are
few studies that concentrate on install time or
efficiency. For example, a data structure is introduced
to handle insert and delete operations efficiently [3],
but it is not suitable for storing executables in NOR
Flash ROM.

In this paper, we introduce a module structure to
reduce install time. We note that the module structure
is also meaningful to reduce the delta data size, or
download time.

3 Overview of Module Structure

3.1 Premise

As a program loading mechanism, we assume a

mechanism as follows:

(1) All symbol references are statically resolved,

(2) Each program in the executable form is executed
directly on NOR Flash ROM.

3.2 Outline of Module Structure

We explain an outline of the module structure in this
section. We also show an image of the module
structure in Figure 1.

3.2.1 Fixation of Program Allocation

As programs are written into NOR Flash ROM, we
must rewrite the whole program even if the content
does not change and only the allocation changes. If we

allocate all programs adjacent to each other, any
change in the size of one program causes a rewriting
of all programs allocated behind it. So, it is preferable
to allocate each program on a fixed address to reduce
unnecessary re-allocation. But if the number of
programs is large, it becomes difficult to manage the
allocation of all the programs.

So we propose to manage the allocation in a unit
called "module”. Each module consists of one or more
programs, and we fix the order of programs in each
module. We also fix the start address of each module
and allocate programs in their order. To fix the
allocation of all modules, we set a gap zone between
each pair of adjacent modules.

By managing allocation of programs in the unit of
the module, we can reduce negative effects on install
time caused by changes in program size. But there is
another problem in shortening the install time. That is
the symbol references across different modules.

Assume that one program is corrected and the
address of a function in that program changes. Then,
most of the references that refer to the function also
change. This means that one correction in a program
may cause changes in not only the module to which
the program belongs but also other modules. In this
case, we have to rewrite many sectors and so we need
a long install time. We also need a long download time
because changes are spread throughout the whole
executable and the size of the delta data becomes
large.

To avoid the effects of symbol references, we
introduce another feature of the module structure
below.

3.2.2 Function References

To resolve function references, we set a "vector table”
in each module. A vector table is a set of vectors,
consisting of branch instructions to global functions in
the modaule. To resolve a function reference across two
modules, we let the reference refer to the vector that
indicates the target function rather than the target
function itself (Figure 2). By forcing the address of
each vector to be fixed, address changes of global
functions in one module do not affect references in
other modules.

We do not apply vector jumps to function references
resolved inside the same module. This rule is based on
two reasons as follows:

(1) Vector jumps cause overhead in execution time,

(2) Programs in the same module tend to be allocated
in the same sector, so install time does not
increase so much without vector jumps.

3.2.3 Data References

As for data references, we cannot apply any ideas like
a vector table because of their characteristics. But
from pre-analysis, the size of the data rarely changes
due to updates. So it is enough to pack all the data in
each module together and allocate them in a fixed area

Flash ROM RAM
Vector table Data of Programi
Data of Programi Module 1|__Data of Program2
Data of Program2 Data of Program3
Data_of Program3 ’ .
Code of Programi /
Code of Program2 ,/ /f
Code of Program3 ‘91 -
T ,’///
/
e / &
/7
/7
// [Gap zone
/

Figure 1: Allocation of programs

reference This reference does not change
—
funcA(); Module! funcAQ; -
{not changed)
g Vector table e
branch funcA &) of Module 2 7 Ihranch funcA £
- (fixed)
funcA(- S__: _address move
——————— |
- & Module2 funcAQ €7
g (changed) (
] '-: “ee
target function i‘_—BLT_. }

Figure 2: Vector table

separated from the code in the module (Figure 1).

If we have to treat data references strictly, changing
all global data references across two modules via
functions is one solution. But it is not practical
because we must correct many source files. It also
creates overhead in execution time.

3.3 Executable Construction

A procedure to construct an executable according to
the module structure is divided into two phases, initial
phase and update phase. We have proven this
procedure using GNU compiler collection and binary
utilities.

3.3.1 Initial Phase

The initial phase constructs the initial executables. The

initial phase has five steps and each step is carried out

for each module simultaneously.

(1) Compile
Compile each program without resolving symbol
references.

(2) Temporary link
Link compiled programs with a link script without
resolving symbol references’ and generate a
temporary module. The link script describes the
allocation, and we confirm addresses of global

functions and data in this process. We also set gap
zones in this step.

(3) Vector table generation
Extract global functions from the temporary module
and build a vector table. Each vector table is written
in assembly language and then assembled.

(4) Symbol file generation
Extract global data from the temporary module and
write their symbol names and addresses into a
symbol file, which is written in a format of link
script. Also write the symbol name of each global
function and address of the corresponding vector.

(5) Final Link
Link the temporary module with the vector table
and symbol files of other modules. In this step, we
resolve all symbol references and generate a final
executable for each module.

3.3.2 Update Phase
Update phase is carried out whenever updates are
required. Basically, this phase is applied to corrected
modules only.
(1) Recompile
Compile corrected programs without resolving
symbol references.
(2) Temporary link
(3) Vector table generation
Make a vector table inheriting the address of each
vector from the vector table of the previous version.
(4) Symbol file generation
If the address of a global data is changed, the update
phase has to be carried out for modules that are not
corrected.
(5) Final link

4 Estimation of Update Time

The main effect of the module structure is that we can
shorten the update time. Here, we roughly estimate the
update time and show the benefits of the module
structure.

4.1 Definitions and Assumptions
We define system specific figures in Table 1. The
column marked "Sample” is explained in Chapter 5.
Then we make assumptions listed below for
simplicity:
e All programs are in the same size,
e Programs are assigned to modules equally,
e Symbols and references are uniformly distributed
in each program,
One update causes a correction in one program,
Corrections occur in each program at random.

It is necessary to know how many modules are
corrected to estimate the update time. Let x denote the
number of modules and y denote the frequency of
updates. Then, the average number of corrected
modules under x and y is

_xr=(x=1)
Xy = ! :

4.2 Install Time
Corrections in one module do not always require
erasing and rewriting to all sections in the module, and
the average number of sections to be erased and
rewritten depends on how many times corrections
occur in the module. But for simplicity, we assume
that we need to erase and rewrite all sections in one
module if at least one correction occurs in the module.
Here, the average number of sectors in each module
is S/. So, the average install time is

S
E(x’y)=;'E'uxy'

u

(1)

2

4.3 Download Time :

Download time depends on the size of the delta data
and average data transfer speed. Since data transfer
speed is specific to a service, we discuss the size of the
delta data only.

4.3.1 Causes of Differences
The size of the delta data mostly depends on how
many bytes and how many parts are changed, and
changes are classified into two types. One is caused by
a correction itself, like adding one conditional branch.
We call this kind of change “direct changes™.
Another is caused by symbol references. As we
have explained in Section 3.2, all references in one
module are not changed when the other modules are
corrected. But when corrections happen in their
module itself, some of the references are changed. We
call this kind of change “indirect changes”. In indirect
changes, there are three types of changes as follows:
(1) Absolute references to moved area from the
whole module,

(2) Relative references between moved area and fixed
area,

(3) Relative references to another module from
moved area.

Figure 3 shows an image of these changes. Note that

the third type includes vector jumps.

Now, We estimate download time and the size of the
delta data under the number of modules x and the
frequency of updates y.

43.2 Direct Changes

The size of delta data caused by direct changes
depends on how corrections are made. The precise
estimation of the size depends on the actual cases.
Therefore, we define the average delta data size per
correction A as a system specific figure. Then, the size
of the delta data caused by direct changes Dy,(x,y) is
given as

Dy(x,y)=4-y. 3)

Table 1: System specific figures

Symbol |Descriptions Sample

s The number of sectors in NOR Flash ROM 224
E Time to erase and rewrite one sector (in sec) 2.0
Z Average data transfer speed (in byte/sec) 12800
P The number of programs in targe software 3417
A The average size of delta data per one direct change (in byte) 10240
G The number of global functions 23833
Rir The number of relative references inside each program 13940
Ria The number of absolute references inside each program 350884
Rar The number of relative references across different programs 214980
Raa The number of absolute references across different programs 70464

4.3.3 Indirect Changes

In the case of indirect changes, the delta data size
mostly depends on how many references are changed.
Here we use add commands and copy commands
introduced in [7] for the estimation. We assume that
the size of each add command is 5 bytes and the size
of each copy command is 4 bytes. Then, for the
number of changed references r, the delta data size is
nearly (5+4)r bytes. Although there are cases that
some of the copy commands are not necessary and
some of the add commands can be unified, we ignore
those cases for simplicity.

Now we estimate the number of changed references
to calculate the delta data size caused by indirect
changes. There are three types of indirect changes, and
the number of changes for each type largely depends
on where and how many times corrections occur in
each module. Although it is not impossible to calculate
the average for each type, we only use the maximum
because calculating the average is rather complicated.

For the first type of changes, the maximum number
of changed references in one module ry; is the number
of absolute references where both referring and
referred sides are in the module. Since we assume
uniform distributions of references, the equation

below holds.
Vit] / X,

P-x

rg = (R,-a + (4)
Here (P-x)/Px means the probability that another
program comes to be in the same module from a
viewpoint of each program.

relative
reference (3)

Modulel
(no change)

relative
L references (2)

Module2 | Insertion

(changes)
— absolute
address references (1)
move

Figure 3: Image of indirect changes

For the second one, the maximum number r,; is the
number of relative references where both sides are in
the module. Taking the number of vectors g/x into

account,
P-
rx2=(Rr'r + Pxx'Rar +g]/x' (5)

For the third one, the maximum number r.; is the
number of relative references where referred sides are
in other modules, and so

rﬂ=(1-—l;T:]-Rar/x. (6)

Considering the average number of corrected
modules u,, the size of the delta data caused by
indirect changes is

D.l (x'y)zg-u.ty .(r.tl +r.t2 +rx3)‘ (7)
In this way, the size of the delta data is
D(x,y)=D,(x,y)+ D,(x,) (8)
and the download time is
Dlx,
T, (x.y) = % (9)

where Z is the average data transfer speed.

4.4 Total Update Time
From Section 4.2 and 4.3, we can obtain the total
update time 7(x,y) as described below:

T(x,y)=T,(x,y)+ T, (x,) (10)

It is obvious that a larger number of modules x
results in a shorter update time T(x,y) for every
frequency of updates y. See Chapter 6 and Figure 4
where update times are shown for a sample software.

5 Appropriate Number of Modules

We have shown the advantage of the module structure
in Chapter 4. But there also exists disadvantages of the
module structure. The main disadvantages are
overhead in execution time and memory usage for gap
zones. It is clear that a larger number of modules
makes the disadvantages worse.

Thus, there is a tradeoff related with the number of
modules, and so it is important to decide the
appropriate number of modules. In this chapter, we
introduce a method to determine the appropriate
number of modules.

5.1 Approach

In order to decide the appropriate number of modules,

we adopt an approach as follows. ‘

(1) Formulate a correlation among the number of
modules, the frequency of updates and update
time.

(2) Set permissible amounts on the frequency of
updates and update time.

(3) Calculate the minimal number of modules that
satisfies the permissible amounts set in (2).

(4) Adopt the number calculated in (3) as the
appropriate number of modules.

5.2 Method
Since we have already shown the correlation in
Chapter 4, we can describe a method to determine the
appropriate number of modules X according to the
permissible frequency of updates Y and the
permissible update time T as follows:

(1) Setx:=/,

(2) Calculate 7T(x,Y),

(3) If T(x,Y) > T, then set X:=x-/ and end,

(4) Setx:=x+1 and go back to (2).

6 Example and Evaluation

We show an example of update time estimation using
data from a certain mobile phone. We show system
specific figures in the “Sample” column of Table 1.
Among those figures, S, E, P, R, Rig, Ry, Rizand G
are obtained from the mobile phone. We determine Z
assuming a 3G service, and 4 from results of
pre-analysis.

Figure 4 shows the estimation of the total update
time. In the figure, we plot for four Y values, 1, 10, 30
and 50. We can see that a large number of modules
result in a short update time. But for small y, a large
number of modules is not necessarily required. For
example, there is little difference between x=60 and
x=80 for y=1.

From Figure 4, we can determine the appropriate
number of modules according to the method
introduced in Section 5.2. For example, the
appropriate number of modules is about 50 under the
condition Y=30 and T=400.

7 Conclusion and Future Work

In this paper, we introduce a module structure aiming

at the reduction of update time for OTA update

services. We also introduce a method to build
executables according to the module structure, and
show the effects of the module structure and a method
to determine the appropriate number of modules from
a standpoint of update times.
For future works, we have listed topics below:

e Evaluation of the module structure using real
data. This includes not only update time, but also
execution time and memory usage..

e Detailed estimation of update time.

300
200

100
o M S
0 20 40 60 80
The number of modules x

f
; 1000 -
Py ~= S
. 2 800 : v=10,
- NI —k—y=30
> AN —— [
X 600 y=50
" 500 A X
o
£ 400 SR
2
[}
-
Q
=)

Figure 4: Update time

e Consideration of program assignments.
e Estimation of a correlation between the number
modules and execution time.

References

[1] M. Ajtai, et al. Compactly encoding unstructured
input with differential compression. Journal of
the ACM, 49(3):318-367, May 2002.

B. S. Baker, U. Manber and -R. Muth.
Compressing Differences of Executable Code. In
Proceedings of ACM SIGPLAN 1999 Workshop
on Compiler Support for System Software
(WCSSS ’99). May 1999.

P. Eaton, E. Ong and J. Kubiatowicz. Improving
Bandwidth Efficiency of Peer-to-Peer Storage. In
Proceedings of the Fourth IEEE International
Conference on Peer-to-Peer Computing (IEEE
P2P ’04). August 2004,

J. Gailly and M. Adler. zlib compression library.
Available at http://www.zlib.net/.

J. J. Hunt and W. F. Tichy. Delta Algorithms: An
Empirical Analysis. ACM Transactions on
Software Engineering and Methodology,
7(2):192-214. April 1998.

Y. Okada and K. Terazono. A New Delta
Compression Algorithm Suitable for Program
Update in Embedded Systems. In Proceedings of
the Data Compression Conference (DCC ’04).
March 2003.

C. Reichenberger. Delta Storage for Arbitrary
Non-Text Files. In Proceedings of the 3rd
International Workshop on Software
Configuration Management, pages 144-152. June
1991

T. Suel and N. Memon. Algorithms for delta
compression and remote file synchronization. In
Lossless Compression Handbook. Academic
Press. 2002.

[2]

B3]

[4]
[

(6]

7

[8]

[9] M. Takeichi, et al. Bug Fix of Mobile Terminal
Software using Download OTA. The
Asian-Pacific Network Operations and

Management Symposium. October 2003.

