[FAF 4 THREBELQBOBY - a7) ERITENA

Implementation and Evaluation of Transactional Agents for Distributed
Systems

Youhei Tanaka!, Naohiro Hayashibara!, Tomoya Enokido?, and Makoto Takizawa!
Dept. of Computers and Systems Engineering Tokyo Denki University, Japan
{youhei, haya, taki}@takilab.k.dendai.ac.jp
2Faculty of Business Administration Rissho University, Japan

eno@ris.ac.jp

A transactional agent is a mobile agent to manipulate objects distributed on computers with some commitment
condition. In this paper, we present a computation model of transactional agent and discuss how to implement
a transactional agent to manipulate objects on multiple database servers. In order to reduce the communication
overhead to transfer a transactional agent from a computer to another computer in networks, a transactional agent
is decomposed into a pair of routing and manipulation subagents, We evaluate the transactional agent model in
terms of access time compared with the traditional client-server model.

1 Introduction

Various types of objects are distributed on multiple
computers in networks. An object is an encapsulation
of data and methods for manipulating the data. An ob-
ject can be manipulated only through the methods. An
application program manipulates objects distributed in
computers. A transaction [2] of the application pro-
gram is modeled to be an atomic sequence of methods.
Transactions are traditionally realized in the client-
server model [6]. Here, servers can be made more re-
liable by using muitiple replicas of the servers. How-
ever, applications cannot be performed if the clients
are faulty. Mobile agents [3] are programs which move
from computers to computers and then locally manip-
ulate objects in the computers. If an application pro-
gram is realized in a mobile agent, the application pro-
gram can be performed on operational computers by
escaping from faulty computers. We discuss how to
realize an application program on distributed objects
in a mobile agent. In this paper, a transactional agent
is defined to be a mobile agent which autonomously
moves around computers in networks and locally ma-
nipulates objects in each of the computers [7]. In ad-
dition, a transactional agent is specified with one of
commitment conditions [5].

In section 2, we discuss a model of transactional
agent. In section 3, we discuss the implementation of
the transactional. In section 4, we evaluate the trans-
actional agent in terms of access time compared with
the client-server model.

2 Transactional Agents

2.1 Transactional Agent

A system is composed of computers Dy, ..., Dy, (n
2> 1) interconnected in a reliable network. Messages
are delivered in a sending order without message loss
in the network. Each computer D; is equipped with a
class base CB; and an object base OB;. In the class
base OB;, classes are stored. The object base OB;
is a collection of persistent objects. On receipt of a
method request, the method is performed on an object
in the object base OB;.

In the client-server model, a transaction is per-
formed on a client or an application server. The trans-
action issues methods to servers. Methods are per-
formed on objects in the servers and the responses of
the methods are sent to the transaction. Even if a server
is faulty, a transaction can be operational if the server
is replicated. However, a transaction cannot be per-
formed if the client or application server is performed
is faulty.

A mobile agent is an object-based program, which
moves around computers in networks and locally ma-
nipulates objects in each computer [3]). A class ¢ is
stored in a home computer home(c). Here, home(A)
shows a home computer of the class of a mobile agent
A. A mobile agent A is initiated on a base computer
Base(A) by loading classes of the mobile agent from
the home computer. If a method on some class ¢ is in-
voked by a mobile agent on a computer, the class c is
loaded from the home computer home(c).

In this paper, a transaction is realized in a mobile
agent [Figure 1]. A transaction can be operational if it

I I
Base computer E ﬁ

Figure 1. Transactional agent (TA) model.

is performed on an operational computer even if a base
computer is faulty. Suppose a transaction is moving to
a computer D;. Here, if D; is detected to be faulty, the
transaction can move to another computer.

A transactional agent is defined to be a mobile
agent which satisfies the following properties: -

1. Autonomously makes a decision on what com-
puter to visit in presence of faults of computers
and change of service supported by computers
and networks.

2. Moves from computers to computers in networks
and locally manipulates objects in a computer.

3. Commits only if some commitment condition
intrinsic to the transactional agent, otherwise
aborts.

Target objects are objects to be manipulated by a
transactional agent. A computer with target objects is
a target computer of a transactional agent. A domain
Dom(A) is a set of targer computers Dy, ..., D, of a
transactional agent A. Classes of a transactional agent
is transferred from computers to computers while the
program is fixed on a client or application server in a
client-server model. In order to reduce the communi-
cation overhead to transfer classes among computers,
a transactional agent A is decomposed into a pair of
routing subagent and manipulation subagent.

According to the traditional concurrency control
theories, a transaction commits only if objects in all
the target computers are successfully manipulated.
This is the atomic commitment condition. In addition,
we consider other types of commitment conditions [5]
which are discussed later.

2.2 Routing subagent

A routing subagent RA(A) makes a schedule to
visit target computers, An object z flows from a
computer D; to another computer D; in a transac-
tional agent A (D; £ D) iff a manipulation subagent
M A(A, D;) on a computer D; outputs an intermedi-
ate object = and a M A(A, D;) on another computer
D; uses the intermediate object z as an input.

An output-input relation among manipulation sub-
agents is shown in a navigation map Map(A) as shown
in Figure 2. A path D; — D; shows an output-input

relation D; £ D; from a computer D; to another com-
puter D;. In Figure 2, M A(A, D) of the transactional

~ agent A derives an intermediate object w from a com-

puter D1. M A(A, D3), M A(A, Dy), and M A(A, Ds)
use the intermediate object w as the input objects in the
computers D3, Dy, and Ds, respectively.

A pair of computers D; and D; are independent
(D; || Dy) if neither D; — D; nor D; — D; in an
output-input graph. Here, RA(A) can visit a pair of
the computers D; and D in any order. Figure 2 shows
a navigation map Map(A). Here, RA(A) is required
to visit the computer D3 after visiting the computer
D;. On the other hand; RA(A) can visit a pair of the
computers D; and Dy in any order since the comput-
ers Dy and D, are independent (D, || D2). A node
which does not have any incoming edge is referred to
as initial. In Figure 2, Dy and D, are initial.

In Figure 2, the intermediate object w derived from
the source computer D, is required to be brought into
the destination computers D3, Dy, and Ds. Interme-
diate objects are required to be efficiently transferred
to destination computers.

D : computer.

— : output-input relation.

Figure 2. Navigation map.

. 7
—: output-input relation.
[: computer.

-~ movement.

Figure 3. Schedule.

A schedule to visit target computers is obtained in
RA(A) by the topological sort [4] of nodes in the nav-
igation map G (= Map(A)). The intermediate object
w from the computer D, is used by D3, Dy, and Dy
but the intermediate object = from D is used by one
computer Dy, Hence, D, is selected. A schedule for
the navigation map G shown in Figure 2 is obtained as
shown in Figure 3. Here, a dotted arc shows the vis-
iting order of the computers. A straight arc shows an
output-input relation among computers.

A transactional agent locally manipulates objects
in each computer by moving around computers. If
MA(A, D;) finishes manipulating objects in each
computer D;, RA(A) checks the commitment condi-
tion CC(A) by communicating with the other sibling
MA(A, Dy), ..., MA(A, D) on Dy, .., D,. The

commitment condition CC(A) shows which comput-
ers have to be successfully manipulated:

1. Atomic commitment: all the computers.

2. Majority commitment: more than half of comput-
ers. :

3. At-least-one commitment: at least one computer.

4. (7) commitment: more than r out of n computers.

2.3 Manipulation subagents

On arrival of a routing subagent RA(A) on a
computer D;, classes of a manipulation subagent
M A(A,D;) are loaded. Objects are manipulated in the
MA(A, D;). MA(A, D;) is an application program
to locally manipulate objects in a computer D;. In a
manipulation subagent, a method of class is invoked.
In this implementation, each time a method is invoked,
the class is loaded to the subagent.

3 Implementation

A transactional agent A is implemented in a mobile
agent of Aglets [3]. A routing subagent RA(A) of the
transactional agent A carries a navigation map object
G. RA(A) makes a decision on which computer to
visit by using the navigation map G. RA(A) selects a
computer and then moves to the destination computer.

An object base OB; is realized in an object agent
OBA,; and database DB;. A database DB; is a rela-
tional database system or XML database system. The
object subagent OBA; supports a manipulation sub-
agent M A(A, D;) with an object-based interface in-
dependent of types of database management systems.

RA(A) leaves a computer D; after objects are ma-
nipulated in M A(A, D;) and the object subagent
OBA;. However, OB A; still holds the objects manip-
ulated by OBA; even if RA(A) leaves the computer
D;. OBA,; is realized in a local transaction on the ob-
ject base OB;. OBA; does not terminate.

In summary, a transactional agent A behaves as fol-
lows:

1. A RA(A) initiates M A(A, D;) and OBA; by
loading their classes to a current computer D;
from the home computers of the classes.

2. If M A(A, D;) issues a method to OBA;, OBA;
translates the method to SQL/XSQL commands
to the database system in the current computer
D;.

3. Even if RA(A) leaves the computer D;, OBA;
still holds locks on the objects manipulated,
MA(A, D;) does not terminate either. M A(A,
D;) negotiates with other routing subagents while
waiting for the final decision for RA(A).

4. RA(A) eventually makes a decision on commit
or abort according to the commitment condition

CC(A) of the transactional agent A. RA(A) no-
tifies the sibling M A(4, D), ..., M A(A, D,,) of
the decision, commit or abort.

5. On receipt of the commitment decision from
RA(A), each M A(A, D;) forwards the decision
to OBA;. OBA; commits and aborts on receipt
of commit and abort, respectively, from RA(A).
MA(A, D;) and OBA,; terminate here.

Suppose a routing subagent RA(A) of a transac-
tional agent A is on a current computer D,, after leav-
ing manipulation subagents M A(A4, Dy), ..., MA(A,
D,) on computers Dy, ..., Dy, respectively. Here,
the transactional agent A can commit if all or some of
the manipulation subagents commit depending on the
commitment condition CC(A) by using the two-phase
commitment (2PC) protocol [8].

4 Evaluation

We measure how long it takes to perform a trans-
actional agent (TA) model compared with the client-
server (CS) model for the same application. Here,
three computers D;, D, and D3 support Oracle
database systems as object bases and one computer A
is a home computer of the classes of manipulation sub-
agents and object subagents. Another computer is a
base computer C of a transactional agent A. The com-
puters are interconnected in the 1Gbps Ethernet.

In the CS model, a same application program as the
TA model is performed on an application server. The
application program issues SQL methods to relational
database systems in the computers D;, Ds, and Ds.
We consider the following types of applications P and
Q for the TA and CS models:

1. Application P: An intermediate object [is de-
rived from the object base OB, . The object bases
in the computers D and D3 are updated by in-
serting I [Figure 4a)].

2. Application Q: I; and I3 are derived from the
object bases OB; and O Bs; in the computers D,
and Dy, respectively. Then, the object base OB3
in D3 is updated by inserting I; and I [Figure
4b)].

1
O)—0)
™0y
Q : computer.

a)

©)-1—b)
O)T:

Q : computer.
b)

Figure 4. Navigation maps for application
programs P and Q. .

In the TA model, a routing subagent RA(A) is first
initiated in a base computer C. RA(A) finds in which

order RA(A) visits the computers D;, Ds, and Dj3.
On arrival of RA(A) on a computer D, the classes of
the manipulation subagent M A(A4, D;) and the object
subagent OB A; are loaded to the computer D; from
the home computer H. Then, the object base OB;
is manipulated through the object subagent OBA; by
M A(A, D;). On completion, the RA(A) moves to an-
other computer. Here, M A(A, D;) and OBA; still ex-
ist. OB A; holds objects manipulated in the computer
D;.

Figure 5. The transactional agent (TA)
model.

In the CS model, each of the applications P and @
is performed on the base computer. Then, the appli-
cation program manipulates the databases in the com-
puters D;, D5, and Dj in this order.

In the TA model, intermediate objects have to be
transferred to other computers where manipulation
subagents of the transactional agent are to be per-
formed. We consider three ways to deliver I from a
source computer D; to another destination D;:

1. RA(A) carries [to the destination computer D;.

2. After RA(A) arrives at the computer D;, RA(A)
requests the source computer D; to send I to the
computer Dj.

3. RA(A) transfers I to the destination computer
D; before leaving source computer D;.

The total processing time T is measured for number
of intermediate tuple objects. The processing time T
is composed of the following times:
1. Tp =time to load and initialize RA(A) at the base
computer c.
2. Ty; =time to transfer RA(A) from a computer D;
to another computer.
3. T5; =time for RA(A) to invoke M A(A, D;)ona
computer D;.
4. Ty; = time for M A(A, D;) to invoke an object
subagent OBA; on a computer D;.
5. Ty = time for OBA; to manipulate objects by
issuing SQL commands to the object base OB;.
6. T3 = time to do the commitment of all sibling ma-

nipulation subagents and for RA(A) to return to

the base computer C.
The total processing time T is given as T = Tp +
Zi:l,...,n(Tli + To; + T3; + Ty;) + Ts where n is the
number of target comptuers of the transactional agent
A. The size of the routing subagent is 7kBytes. The
manipulation subagent is 4kBytes. The size of the ma-
nipulation subagent depends on the application. The
object subagent is SkBytes.

50

e

. P

. S
2l

3030

1000 2000 3000 4000 3000 6000 7000 6000 9000 10000

Numder of intermecam objects

—a— ApcBication P | NC -8~ A P1C =e— Acplication P2 NC =, P2C
| == Aoghcation P 3 NC —e— Apgiication P31 € —- Acplication PCS

Figure 6. Processing time of P.

1000 2000 3000 4000 3000 6000 OO0 8000 §000 10000
Numver of intermadate cbjicts

—— Acglication O 1 NC ~8—Apcication O 1 C —a— Apdication @ 2 NC —3—Aodicstion 0 2C
[~ Aogication O J NC —e— Aogicaion 0 1€ —+—Agication O CS

Figure 7. Processing time of Q.

The computation of a transactional agent is com-
posed of steps: initialization moving of the routing
subagent, loading of manipulation subagents, loading
of object subagents, manipulation of objects, and com-
mitment. Tables 1 and 2 show how long it takes to
perform each step for the applications P and Q, re-
spectively. 96% — 98% of the total access time in the
transactional agent is spent by the manipulation sub-
agent and object subagent, the manipulation time in
the TA model is longer than the CS model.

5 Concluding Remarks

We discussed how to realize a transaction to ma-
nipulate objects distributed in multiple computers in a

Table 1. Processing time P.

[s]
1 (Carry) 2 (Request and send) | 3 (Independently transfer) | 4 (Client-server model)
Initialization 0.012 (0.015 %) 0.012 (0.016 %) 0.012 (0.016 %) 0.157 (2.879 %)
Moving " 1.962 (2.459 %) 1.085 (1.481 %) 0.892 (1.182 %) 0
MA loading 0.029 (0.036 %) 0.032 (0.043 %) 0.083 (0.22) 0.037 (0.678 %)
OBA loading 0.019 (0.023 %) 0.018 (0.025 %) 0.174 (0.023 %) 0
Manipulation | 77.594 (97.245 %) { 72.029 (98.337 %) 74.18 (98.319 %) 5.235 (96.02 %)
2PC 0.176 (0.22 %) 0.071 (0.097 %) 0.107 (0.422 %) 0.023 (0.422 %)
Total time 79.792 73.247 75.448 5.452
Table 2. Processing time Q. [s]
1 (Carry) 2 (Request and send) | 3 (Independently transfer) | 4 (Client-server.model)
Initialization | 0.012 (0.01 %) 0.013 (0.015 %) 0.012 (0.0127 %) 0.156 (2.6536 %)
Moving 2.235(1.91 %) 1.093 (1.271 %) 0.971 (1.003 %) 0
MA loading 0.03 (0.026 %) 0.038 (0.044 %) 0.035 (0.037 %) 0.041 (0.693 %)
OBA loading | 0.017 (0.015 %) 0.017 (0.02 %) 0.018 (0.019 %) 0
Manipulation | 114.6 (97.95 %) 84.72 (98.54 %) 92.825 (98.788 %) 5.691 (96.18 %)
2PC 0.11 (0.094 %) 0.09 (0.105 %) 0.102 (0.109 %) 0.029 (0.49 %)
Total time 116.99 85.973 93.963 5917

mobile agent. A transactional agent is a mobile agent
which autonomously decides on which computer to
visit, moves to a computer, and then locally manipu-
lates objects. A transactional agent has its own com-
mitment condition. We discussed how to implement
transactional agents in Aglets, We evaluated the trans-
actional agent model in terms of processing time com-
pared with the client-server model. The client-server
model implies shorter responce time than the transac-
tional agent model because the manipulation time of
the transactional agent model is too long. We are now
discussing how to reduce the manipulation time of
the transactional agent manipulating objects at shorter
time.

Acknowledgment

This research is partially supported by Research
Institute for Science [Q05J-04] and Technology and
Frontier Research and Development Center [16-J-6],
Tokyo Denki University.

References

[1] American National Standards Institute. The Database
Language SQL, 1986.

[2] J. Gray and A. Reuter. Transaction Processing : Con-
cepts and Technigques. Morgan Kaufmann, 1993.

[3] IBM Corporation. Aglets Software Development Kit
Home. http://www.trl.ibm.con/aglets/.

[4] D. E. Knuth. The Art of Computer Programming, Vol.
2. Auerbach Publications, 1998.

[5] T. Komiya, T. Enokido, and M, Takizawa. Mobile agent
model for transaction processing on distributed objects,
2003.

[6] N. A. Lynch, M. Merritt, A. F. W. Weihl, and R. R.
Yager. Atomic Transactions. Morgan Kaufmann, 1994,

[7]1 M. Shiraishi, T. Enokido, and M. Takizawa. Fault-
Tolerant Mobile Agent in Distributed Objects Systems.
In Proc. of the 9th IEEE International Workshop on Fu-
ture Trends of Distributed Computing Systems (FTDCS
2003), pages 145-151, 2003.

[8]) D. Skeen. Nonblocking Commitment Protocols, 1982.

[9] Y. Tanaka, N. Hayashibara, T. Enokido, and M. Tak-
izawa. Design and Implementation of Transactional
Agents for Manipulating Distibuted Objects. In Proc.
of the 19th Advanced Information Networking and Ap-
plications, pages 368-373, 2005.

