PNFRAF 4 TEIEEFELET—2 v avT) FKRIEIZA

ANGEL: A Hierarchical Path Optimization Middleware for Real-Time
Multiplayer Gaming in Wired and Wireless Networks

Yugo Kanedat Mika Minematsu?

Masato Saito?

Hiroto Aida! Hideyuki Tokudat'?

t Faculty of Environmental Information
t Graduate School of Media and Governance
Keio University, 5322 Endo, Fujisawa, Kanagawa 252-8520, Japan
{ichiriki, mine, masato, haru, hxt} @ht.sfc.keio.ac.jp

Abstract

In this paper, we propose a novel middleware for support-
ing real-time distributed multiplayer network games, called
“Advanced middleware for Network Gemes utilizing Eligible
Leaders (ANGEL).” ANGEL optimizes the gaming network
based on autonomous node hierarchization. ANGEL hierar-
chizes game players’ nodes based on their message loss ratio
and network latency, and selects the most appropriate path
for exchanging game messages.

We have implemented a prototype of ANGEL on Linux
and evaluated it in both wired and wireless ad-hoc envi-
ronments by using the sample real-time application embed-
ding ANGEL. We show that ANGEL improves network la-
tency, network jitter, and message loss of the paths among
gaming nodes. In wired and wireless ad-hoc environments,
we demonstrate to maintain interactivity of real-time dis-
tributed multiplayer network gaming such as First-Person
Shooting(FPS) dynamically.

1 Introduction

Online Multiplayer Gaming comes into wide use along with
the popularization of various broadband networks and the
technical advantages of gaming devices. Counter-Strike [11]
or WarCraft [1]are the examples of the most popular game
titles. In these network games, we can share the same vir-
tual gaming space and communicate to play the game with
other players who join the same game at the same time
through the Internet.

When we refer to the network architecture of online mul-
tiplayer games, it is divided into two main categories which
are Client-Server architecture (C/S) and Peer-to-Peer archi-
tecture (P2P). In C/S, every player who wants to share the
same gaming space connects to game server which calcu-
lates player’s interaction and transition of the whole game
state, and players update their game states based on results
which are sent by the game server. Most commercial on-
line games adopt C/S. It is clear that game management is
easy for game providers because they can manage gaming
environments centrally. However, it is difficult to continue
hosting gaming service for the reason that they must main-
tain game servers. In addition, players cannot use gaming
service when the game server is down.

On the other hand, P2P has no central management node
for handling players and calculation of game states. This
architecture forms distributed network by connecting play-
ers directly and has no single point of failure such as game
server. In the near future, more widespread use of this ar-
chitecture is expected in network gaming because this archi-

tecture also has an affinity to wireless ad-hoc network that
do not rely on a pre-existing infrastructure.

Though P2P has merits for applying real-time distributed
gaming, we find it hard to create these games because there
are technological problems. One of the most important
problems is synchronization of game states. If we do not
maintain the same game states with each other at the same
time, we cannot play game fairly and impartially. However,
it is not easy for both wired and wireless networks to syn-
chronize with each other accurately since we must allow for
network conditions and mobility of players.

The goal of ANGEL is to optimize wired and wireless real-
time distributed gaming network based on hierarchization
and maintain the best interactive state of game players. Our
approach exploits autonomous node hierarchization that hi-
erarchizes nodes by measuring network latency, network jit-
ter, and message loss ratio, which we define as link state,
after constructing the complete network graph. After hier-
archizing nodes, master node, which manages gaming net-
work, is elected automatically and calculates the most ap-
propriate path.

We optimize both wired and wireless gaming networks by
using the middleware which includes these functions. Seven
sections compose this paper. In Section 2, we describe some
backgrounds of network gaming. We refer to the problem of
wired and wireless gaming environments in Section 3. Sec-
tion 4 shows the architecture design of our approach and its
implementation. Furthermore, we describe the experimen-
tal evaluation in Section 5. Section 6 shows some related
work and we conclude our work and give a brief outlook for
future work in Section 7.

2 Background Briefing

In this section, we explain short background information
of network gaming in the Internet. Moreover, we introduce
wireless ad-hoc gaming environments, which we call “Mobile
Ad-hoc Group Gaming (MAGG).” MAGG will gain popu-
larity by contribution of high-end mobile wireless gaming
devices in the near future.

2.1 Network Architecture

In ordinary network games, the ways of exchanging game
messages among players are divided into two main cate-
gories.

1. Time-based synchronization (TS): Synchroniza-
tion activities performed by each node sending its game
state periodically to other nodes.

— 329 —

2. Event-based synchronization (ES): Synchroniza-
tion activities performed in response to external events
such as user input.

Also, in P2P network games there are two ways to connect
each player at the beginning of a game.

1. Hybrid configuration (HYBRID) : When players
start a game, a server node waits to be connected by
other nodes. After all nodes are connected to the server,
the server sends players’ information to all nodes and
players start playing game after connecting with each
other.

2. Pure configuration (PURE) : Each node attempts
to find other nodes by sending search packets periodi-
cally. When the sender finds a node that responds to
search packets, it acquires information of other nodes
through that node.

ES is well used and will be suitable for most of future
distributed multiplayer gaming such as FPS in the Internet.
The reason is that players cannot always reserve constant
time to arrive game messages due to the heterogeneity of
condition in network, and TS needs high overhead to copy
all game state information of each player rapidly and period-
ically. The way of finding nodes used is HYBRID in FPS
games. Additionally, players play such games for a short pe-
riod and when they are playing a round game, other player
who wants to play the same round cannot join the game.

2.2 Mobile Ad-hoc Group Gaming

In the near future, we will be able to not only play network
games in the Internet but also play wireless ad-hoc network
games by using mobile wireless gaming devices such as “Play
Station Portable [10).” Players gather at small area where
they can see each other, and they retain mobile gaming de-
vices attached with a wireless device. A player starts as a
server and waits to be connected from other players. Other
players connect to the server, and they obtain information
of players who connect directly. Additionally, they connect
with each other and start to play game immediately. We
assume to construct a simple wireless complete graph net-
work to play such games by applying HYBRID and these
games are also designed by ES. The number of players will
be not over 50, and we do not assume massively multiplayer
gaming. We show an example of MAGG in Figure 1.

Connection Establish

Connection Request

................

Figure 1: An example of communications in MAGG

3 The Problem of Synchronization in Net-
work Gaming

When we make consideration about architecture of network
games, synchronizing game states will be one of the major
problems. In the Internet, this is caused by network latency
and jitter [2]. Commercial network games use dead reck-
oning technique [9], which predicts movement of player’s

characters by using direction, speed, and acceleration to
avoid inconsistency of game states among players. How-
ever, this technique does not necessarily have a beneficial
effect on all real-time network games because operations of
some games do not include factors of predictable movement.
In distributed environment, latency becomes more serious
for the reason that players, which have heterogeneous link
states, receive game messages from others at different time.

In a similar way, in MAGG, it is not easy to synchronize
with each player well since we must allow mobility of players.
Each player does not always stay at the same place. The
physical locations of players will be gradually changed. We
can assume the case of playing in the house. At the begin-
ning, there are players near the same place. However, there
may be a player who moves to the back of an obstacle. For
example, a player moves to be seated in a chair, which is the
back of an obstacle from a player, to be relaxed. Due to the
characteristic of wireless technology such as 802.11b [7], it is
difficult between wireless devices to communicate through
large obstacles and impossible to maintain the direct con-
nection between such players. In MAGG, if there is a player
who cannot communicate with others, game state of each
player becomes asynchronized.

4 Design and Implementation of ANGEL

For supporting synchronization of game states, our ap-
proach is to incorporate a layer of autonomous path opti-
mization middleware in game applications. We name it AN-
GEL. We realize multi-hop communication on application-
layer by using ANGEL after players construct the complete
graph network to optimize paths in wired and wireless gam-
ing networks.

4.1

" Network State Measurement |

|| Autonomous Node Hierarchization “

Ordinary Master Root .
|- Cannection State. [|[[Path Optimization||| State Replication |
| State Replication | ‘

Figure 2: System architecture of ANGEL

We show the basic architecture of ANGEL in Figure 2. At
the beginning, nodes form a graph network by connecting
with HYBRID. After that, each node attempts to measure
message loss ratio, network latency, and latency variance of
direct links. Based on these information, nodes that join the
game are divided into three categories: ordinary node (ON),
master node (MN), and root node (RN). ON measures link
state and reports to MN. MN constructs information of net-
work topology based on link state information from ONs.
MN attempts to check their link states periodically. If MN
finds a node that can acquire a better network environment
via an other node or a node that will break away from the
gaming network, MN sends message for ON to change path.
Additionally, ANGEL adapts hybrid synchronization archi-
tecture since it synchronizes to send game state from MN to

— 330 —

ONs with TS if application programmers need to guarantee
periodical synchronization among players.

ANGEL consists of five main functions. We explain each
function in the following.

o Network State Measurement Function

Each node measures link state by sending small packets
after connecting with each other. Based on this, each
node exchanges the average network latency, maximum
network latency, message loss ratio, and latency vari-
ance from itself to others with each other. We define
these information as link state information.

o Autonomous Node Hierarchization Function

After exchanging link state information, the node that
retained minimum value of average network latency
starts running as master node automatically. When
there are nodes that have the same value, MN is elected
by comparing maximum network latency. MN sends
alive packets that tell the existence of it. When MN
leaves the gaming network, each node detects it from
the lack of alive packets and starts to elect MN among
them by the same process again.

For the scalable management, approximately 15 % of
the nodes are elected as MNs. When there exist mul-
tiple MNs, RN is selected the same way to elect MN.
RN acts the leader among MNss.

e Connection State Report Function

After electing MN, other nodes act as ONs and measure
link states. ONs keep link state information in their
data table and send them periodically to MN.

e Path Optimization Function

MN constructs application-layer routing tree based on
link state information from ONs. In addition, MN at-
tempts to find a path which has less message loss ratio,
less network latency, and less latency variance. If MN
finds such a path, MN orders ON to change the path.

e State Replication Function (Optional)

MN sends its own game state to ONs to synchronize
periodically. MN transports game state at the opti-
mized time since they are selected based on the best
link state.

Initiate Optimization

Start discovering
better paths

[Calculate all paths

no
Better than

Wait for
link state informatio

yes

yes
[Generate order to ON |

I
[SendordertoON |——u

Figure 3: Path optimization performed by MN

‘We mention how MN calculates and determines to opti-
mize paths in detail. The process is illustrated in Figure 3.

Path Optimization Function is executed after hierarchizing
nodes. This function continues to compare the current paths
and tree of all paths that are constructed by link state infor-
mation from ONs. For calculation of paths. we use Dijkstra
algorithm. Additionally, we set up thresholds to optimize
paths to prevent switching paths at short intervals. If MN
finds a better path, MN compares the path and thresholds.
When found path has acceptable values to optimize, MN
generates order message for ON to change path and sends
it to ON. These realize effective optimization without chang-
ing paths drastically. We have also defined suitable thresh-
olds for both wired and wireless networks because both en-
vironments possess different characteristics. The details are
discussed in the following subsection.

4.2 Implementation of ANGEL

We have implemented a prototype of ANGEL on
application-layer using UDP on Linux kernel 2.4.20. This
prototype includes Connection State Report Function and
Path Optimization Function. It also provides the function
of game server for certificating if game applications do not
equip with certification function. Game applications use
ANGEL API. We need only to write these functions in game
applications. ANGEL sends game messages after applying
message type to game message to determine which packet
is ordinary game message or system message for ANGEL.

ANGEL works as following. A measurement packet in-
cludes packet sequence number. When other nodes receive
this packet, they send an ack packet back to the sender. Af-
ter the sender receives this packet, it calculates the round
trip time (RTT) and keeps the value in its data table.
Sender repeats this 5 times, and it calculates the average
network latency, average message loss ratio, and standard
variation of network latency. Then, their information are
copied in the send buffer as the same way to create a game
message and sent to MN. The 5 times is defined by exper-
imental approach on the basis of overhead of system and
adaptation to mobility.

ANGEL checks ANGEL header of all packets when MN
receives packets from ONs. All these packets include the
message type number in ANGEL header. Then, ANGEL
finds a packet which includes the header of ordinary game
message, and the game message is copied in the game receive
buffer, which is used for game applications to pick up game
messages from ANGEL, after deleting the ANGEL header.

There is the major difference between MN and ON when
they receive system packet of ANGEL. An ON receives mes-
sage from MN with address of destination node which orders
whether to use the link or not. Based on this order, the ON
changes the path. Furthermore, an ON also receives the
message to forward to other node. When the ON receives
this message, the ON sets the forwarding flag in data table
and forwards the game messages when the ON receives it
from the node. MN is the main node for processing path
optimization of real-time distributed gaming network. Path
Optimization Function is executed at MN after collecting
link state information from ONs in a given amount of time.

4.2.1 Providing Simple API in ANGEL

To develop distributed real-time game application easily is
one of the important problems. ANGEL provides simple
API for trying to solve this problem. APIls are suitable
for ES gaming architecture (2]. Application programmers
do not need to concern about the timing to deliver game

— 331 —

messages. We show these examples of API and we post the
pseudo application code using ANGEL-API in Figure 4.

¢ ANGEL_SEND_MSG

This function supports that ANGEL sends player’s in-
puts to other players. After using this function, AN-
GEL sends messages to other players with appropriate
paths.

e ANGEL_RECEIVE_MSG

This function supports to snoop the network buffer and
receive game messages automatically. When game mes-
sages arrive at the destination host, ANGEL deletes its
header and copies the message to game buffer.

e ANGEL_DELETE_HDR

This function deletes ANGEL’s headers from received
messages.

BUFFER game_buffer;

eventDrivenFunction{
il(communicationEventOccured(keyEvent) =valid){
ANGEL_SEND_MSG(send_message);
}
else if(messageReceivedOccured(read_buffer) =valid){
ANGEL_DELETE_HDR(read_buffer, game_buffer);
gameUpdating(game_buffer);
}
}

Figure 4: A pseudo code of game application with ANGEL-API

4.2.2 Implementation for Wired Network

As we referred in the previous subsection, it is important
to set suitable thresholds in Path Optimization Function
for stable path changing. First, we show the thresholds in
Table 1 in wired network. Most of the interactive problems
are caused by network latency and jitter [4] in wired network
gaming. Based on stress of human interaction toleration, we
set the latency threshold to 200 msec and standard variance
of jitter to 65.

4.2.3 Implementation for Wireless Network

We have implemented a technique for adapting to mobility
of nodes when MN optimizes paths in wireless network. If
MN finds links which have high jitter variance, we define the
links as moving nodes and mark such links on data table to
detect moving node and avoid highly mobile nodes quickly.
A link is marked when standard variance of jitter is over 60.
If MN finds such links over jitter threshold, MN sends order
to change path to the destination node. At the same time,
to avoid switching path frequently, we set up the threshold
of message loss ratio to optimize paths. A path exchange
occurs when message loss ratio from ON exceeds 30 %.

4.2.4 Support at Application-layer

The reason why we realize application-layer multi-hop and
not routing-laver consists of three main reasons. First, it
is difficult for players to adopt ad-hoc routing protocol in

Table 1: Thresholds for wired and wireless environments

factor / environment | wired | wireless
latency (msec) 200 200
message loss (%) 50 30
jitter variance 65 60

mobile computing devices. Its process needs acknowledge-
ments of operating system that game applications are run-
ning on. Second, we find it impossible to adopt most of these
routing-layer protocols for gaming devices because they are
composed of embedded operating system or architecture.
Third, if we specialize routing-layer protocol in optimiza-
tion for gaming applications, it may cause overhead for other
applications from differences of routing policy. For gaming
applications, it is important to deliver packets for synchro-
nizing game states. However, file transfer applications need
bandwidth for transferring a large amount of data. Most
of routing-layer protocols cannot perceive routing policy of
applications automatically.

4.3 Sample Real-Time Application

We have created a sample real-time application running on
ANGEL for evaluation. It is a simple ES application with
2D view. Characters that correspond with each player move
to the location of mouse pointer. The application program
code is independent from the network protocol stack. We
programmed two types using this same application program
code. One which we call sample P2P version does not in-
clude ANGEL and use direct application-layer multicast
(DALM), and another which we call ANGEL version in-
cludes ANGEL network APIs. DALM is implemented such
that each node connects to other nodes directly with uni-
cast using UDP. For fair evaluation, all characters always
act as the same move pattern on every time. We show the
screenshot in Figure 5.

ST B e
e

Figure 5: A screenshot of sample real-time application

5 Performance Evaluation

We focus on three points to evaluate ANGEL, which are
whether ANGEL optimizes paths of players or not, how
fast ANGEL realizes it, and how much overhead is expected
when used it in wired and wireless networks. To investigate
them, we have conducted two experiments.

5.1 Wired Environment

First, we prepared artificial wired network environment by
using Dummynet [8] for simulating the Internet. It is il-
lustrated in Figure 6. We used three notebook PCs and a
desktop PC. These notebook PCs are connected to the dif-
ferent network segment through the desktop PC with each
other and we generated three round-trip latencies that are

— 332 —

approximately 200 msec, 40 msec, and 40 msec on desktop
PC using Dummynet. Then we ran two types of sample
real-time game applications that are described in Section
4.5 on each notebook PC.

In this evaluation, a node started as server also runs as
MN. At first, other players try to connect to it to join a
game. After connecting each other, ONs measure their link
states, then the MN detects link of high network latency
and network jitter, and orders ONs to change to the better
path from reporting link states of ONs. To compare perfor-
mance of them, we evaluate the traffic overhead, percentage
of message loss ratio, and convergence time for changing
path in MN of ANGEL.

We have changed the interval that each node sends small
packets. This is heuristic approach with allowing for reduc-
ing of overhead to measure link states. We have done the
evaluation 15 times for each interval and have defined each
session time as 10 minutes which is based on the model of
playing time in FPS game [3].

Figure 6: The experimental environment for wired gaming net-
work

5.2 Performance Analysis in Wired Environ-
ment

We show transition of convergence time in Figure 7 and
the overhead of ANGEL in Figure 8. In this evaluation,
convergence time is defined as the time from start of com-
munication between players to the time that path chang-
ing is ordered by MN after collecting link state information
from ONs. Furthermore, we define traffic overhead as sent
data among three nodes and investigated them to measure
overhead of sample P2P and ANGEL. When we define the
interval 100 msec, ANGEL optimizes wired network at ap-
proximately 1 second after connecting with each other. It is
tolerance level because commercial FPS keeps playing game
session from 15 to 30 minutes at average [3], then players
can play most of session time with optimized paths. In ad-
dition, we can understand that there is trade-off between
convergence time and overhead.

Additionally, the maximum overhead in this evaluation
is 11 %, which was compared with sample P2P. When we
adopt ANGEL to commercial network games, this overhead
will become lower since most of the commercial network
games send and receive more traffic than this application.
5.3 Wireless Environment

For the wireless evaluation, we experimented in the wireless
environment shown in Figure 9. We used same note PCs
attached with 802.11b wireless card and each node is set
ad-hoc mode. Then a node that acts as MN starts up a
round game, and other nodes connect to the node.

The definitions of experimentation number and session
time are same with wired evaluation, and we have changed
the interval that each node sends small packets from 100
msec to 1000 msec. We decided that message loss is always

-
o
[
@
E
-~
©
E
=1
©
[
c
[
»
©
>
e
3 0 ")
o © © o e © o o o o
© © © © © 6 o © o© o
- &N ® 8 B © ~ ©®© o6 o
-

. Intervals to measure link state(msec)
Figure 7: Convergence time of path optimization in wired envi-
ronment

S

I

=1

B_10 - e e

£E s

55|

I B —

s€ , | B o I

= E

Pl —7 0.0.0.o0

b ; i

¢ LU LN oo o

o [~ o o =3 (-3 [~ (-] [-3 o Q
o o o o o [=] o o o

(=
- ~N ™ ~ n © ~ @® L] o
-

Intervals to measure link state(msec)
Figure 8: ANGEL's traffic overhead in wired environment

caused in wireless ad-hoc environment and it is important to
think of overhead to measure link state and to detect mes-
sage loss from our study. We also evaluated traffic overhead,
the percentage of message loss ratio, and convergence time
for changing path in MN between sample P2P and ANGEL.

1=K
D Obstack Ry T
. \
= ' o Rom
o— Strong path \
----- Weak path s
¥ y

25m

Figure 9: The experimental environment for MAGG

5.4 Performance Analysis in Wireless Environ-
ment

The results of experiments are illustrated in Figures 10
and 11. When nodes measure link states at 200 msec, path
optimization is occurred at minimum time of 1 second. It is
sufficient span to detect link states and optimize paths be-
cause we assume that game players move around by using
wireless gaming device including ANGEL at average walk-
ing speed.

At this time, ANGEL increases the traffic overhead by
10 %. In commercial network games, each player sends
game packets approximately 2800 bytes every second. The
percentage of ANGEL's traffic overhead also becomes lower
when we adopt ANGEL to commercial network games for
the reason that each player sends game packets approxi-
mately 1900 bytes every second in our sample application.
These figures also demonstrate that there is trade-off be-
tween convergence time and overhead, and interval of 800
msec is the best and its overhead is 1.7 % which is tolerable
for mobile game applications and the overhead of network

1/0.

—333 —

intervals to measure link state(msac)
Figure 10: Convergence time of path optimization in wireless
environment

S

s 12 —- T e

3 1

e_. :

ez

oQ

28

£o

24

= E

28

o

£ HNEN=N=Nz

o (=] [-3 (=] Q Q
[=] (=3 o (-3 o
o ™~ «® [-] 2

intervals to measure link state(msec)
Figure 11: ANGEL’s traffic overhead in wireless environment

We also show the difference of message loss ratio between
sample P2P and ANGEL at this experimental environment.
We have calculated message loss ratio from difference be-
tween the number of sent messages and received messages
between nodes. In the case we use sample P2P, there is ap-
proximately 40 % of average message loss ratio between 2
nodes by existence of weak connection. By using ANGEL,
which detects such links with measurement and changes to
the better path, it becomes approximately 5 %.

6 Related Work

V. Ramakrishna et al. [12] have proposed the similar middle-
ware for optimizing real-time multiplayer gaming network.
This futuristic point is that it can be adaptable without
reprogramming game applications and realizes packet ag-
gregation for decreasing overhead. However, players cannot
communicate without root node because all of game mes-
sages pass through it. Furthermore, there is no reference
about mechanism to elect appropriate root. ANGEL in-
cludes function to elect MN and hierarchizes nodes auto-
matically and it does not need all communication through
MN.

There are also some previous research of optimizing
application-level multicast for real time applications in the
Internet. Narada [6, 5] is distributed protocol for optimizing
application-layer multicast of real-time applications. Each
node constructs source-based routing tree by exchanging
routing information with directly connected nodes. In ad-
dition, this protocol optimizes application-layer path based
on bandwidth in wired network. However, in wired network
gaming, it is not sufficient enough to optimize paths based
on bandwidth since the problem of maintaining state syn-
chronization is caused by latency and jitter in many cases.
Compared to Narada, ANGEL utilizes also network latency
and jitter variance for wired network. Furthermore, we use
powerless devices such as PDA in MAGG. It is hard for
all of group players to calculate optimized paths for the
reason that game applications spend much machine power

for creating realistic 3D graphics or sounds. Most of nodes
that play game do not need to spend processing power for
network optimization in ANGEL since it is a simple archi-
tecture which relies on MN for calculation.,

7 Conclusions and Future Work

In this paper, we have advocated growing expectations of
real-time distributed network games and the problem of syn-
chronization of game states. Furthermore, we have proposed
our middleware approach that is called ANGEL for opti-
mizing application-layer paths and supporting delivery of
game messages rapidly. ANGEL is also designed from the
viewpoint of application programmers, game players, and
embedded architecture’s gaming devices. ANGEL makes it
easy to create real-time distributed multiplayer games by
providing simple APIs.

We have shown the results of ANGEL'’s overhead and con-
vergence time of path optimization are tolerable from eval-
uations. Additionally, we found there is trade-off between
path convergence time and traffic overhead.

There are some future work to worthwhile endeavoring
to find better intervals of sending small packets and link
state information packets, and to check the optimized path
on the basis of overhead and path convergence time by us-
ing realistic scenario. We must also refer the scalability of
ANGEL.

We will realize the way to elect MN based on node ma-
chine power. Lastly, we have a plan to implement simulator
of ANGEL to show the effectiveness.

Acknowledgement

This work has been conducted in Ubila Project by Ministry
of Internal Affairs and Communications(MIC).

References

(1) Blizzard Entertainment. Warcraft:
http://www.blizzard. com/wow/.

[2] J. Blow. A LOOK AT LATENCY IN NETWORKED

GAMES. Game Developer Magagine, 1998.
3] F. Chang and W. chang Feng. Modeling Player Session
Times of On-line Games. In Proceedings of ACM SIG

NetGames, 2003.
[4] J. Farber. Network Game Traffic Modelling. In Proceedings

of ACM SIG NetGames, 2002.
[5] Y. hua Chu, S. G.Rao, S. Seshan, and H. Zhang. Enabling

Conferencing Applications on the Internet Using an Overlay
Multicast Architecture. In Proceedings of ACM SIGCOMM,
2001.
[6] Y.hua Chu, S. G.Rao, and H. Zhang. A Case for End System
Multicast. In Proceedm s of ACM SIGMETRICS, 2000.
IEEE 802.11 Standard (q IEEE Computer Society LAN MAN
Standards Committee). Wireless LAN MAC and PHY spec-
ifications: Higher speed Physical Layer (PHY) eztension in
the 2.4 GHz band, 1999.
L. Rizzo. Dummynet: A Simple Approach to the Evaluation
of Network Protocols. In Proceedings of ACM Computer

Communication Review, 1997.
[9] J. Smed, T. Kaukoranta, and H. Hakonen. A Review on

Networking and Multiplayer Computer Games. In Technical
Report 454, Turku Centre for Computer Science, 2002.

[10] Sony Computer Entertainment Inc. Play Station Portable:
http://www.us.playstation.com /pressreleases.aspz?id=207,

2004.
{11] VALVE SOFTWARE. Half Life:Counter Strike:

http: //www.counter-strike.net/, 2002.
{12] V.Ramakrishna, M. Robinson, K. Eustice, and P. Reiher. An

Active Self-Optimizing Multiplayer Gaming Architecture. In
Proceedings of Autonomic Computing Workshop Fifth An-
nual International Workshop on Active Middleware Services
(AMS’03), 2003.

(7

8

=

— 334 —

