[N FAF 4 TMEL IMOEY—2 a3 v 7)) ERRI16%E12A

Concurrency Control for Distributed Objects using
Role Ordering (RO) Scheduler

Tomoya Enokido!, Runhe Huang?, and Makoto Takizawat
tTokyo Denki University
E-mail {cno, taki}@takilab.k.dendai.ac.jp
*Hosci University
E-mail rhuang@k.hosei.ac.jp

A concept of role is significant to design and implement a secure information system. A role shows a job
function in an enterprise. In addition to keeping systems secure, objects have to be consistent in presence of multiple
transactions. Traditional locking protocols and timestamp ordering schedulers are based on principles “first-comer-
winner” and “timestamp order” to make multiple conflicting transactions scrializable, respectively. We define a
significantly precedent lation on roles showing which one of a pair of roles is more significant than another one in an
enterprise. We discuss a scheduler so that multiple conflicting transactions are serializable in a significant order of
roles of transactions.

O—JLIERF A1 (RO) R S 1 —5 % AL = B EAT 14
HFE gadt, #|EfY, R Wt
PIREEBKFRTERER AT LATER
PEBKRFERELIFE .
&#H (role) IR R (BFE) OEBITHISEL, T2 EAEROES L LTERSND. VATLNTHEHED NS
I a v BETICEITENBEE, VAT AROA T V=7 FZELWRIBIZEROEEDICH, A48 0
FIvarvEBINETTOLERDHD. HETHHEDO N v F I v a VEEIHET 5HIEE LT, vy, REZIHIE

Fft7e haABBRBENTWS. ZTRHOFER TEVLoME) BXU IBRZEE Cr7o¥7 v a L 2HES)
LT3, &R, HRUROEBICHISET I ENLHEEOHWEBIIMBEL TITbA3<ETHH. ABRITI,

BEDOFF7 Y7 v a v RRBIOBBREZEICHSL L TEITY 2 2R ETHEFEZRET 5.

1 Introduction

Information systems like relational database systems
[5.7) adopt role-based access control (RBAC) models [6,8].
A role shows a job function like president and sccretary,
which cach person performs in an enterprise. A role is a
collection of access rights which a subject who plays the
role is allowed to do for objects in an enterprise. Here, an
access right (or permission) is a pair {0, op) of an object
o and a method op on the object 0. Only if an access right
{0, op) is granted to a subject s, the subject s is allowed
to manipulate the object o through the method op. In the
discretionary approach [5,7], a subject who is granted a
role can further grant the role to another subject.

A transaction is an atomic sequence of methods which
are performed on objects [1,3]. A pair of methods con flict
if and only if (iff) the result obtained by performing the
methods depends on the computation order. Transac-
tions are referred to as conflict if the transactions ma-
nipulate a same object through conflicting methods. A
collection of conflicting transactions are required to be
serializable in order to keep objects consistent. In order
to realize the serializability of multiple conflicting trans-
actions, locking protocols [1,3] arc widely used. A trans-
action T locks an object before manipulating the object
by a method op. Other transactions to manipulate the
object in a conflicting manner with the method op have
to wait until the transaction T releases the object. Lock-
ing protocols are based on a principle that only the first
comer is a winner and the others arc losers. Another way
is a timestamp ordering (TO) scheduler [1]. Each trans-
action T is stamped time when the transaction T is initi-
ated, timestamp ts(T). Transactions are totally ordered
in their timestamps. Differently from the locking proto-
cols, objects are manipulated by conflicting transactions

in the timestamp order and no dcadlock oceurs.

In this paper, we discuss a concurrency control al-
gorithm bascd on roles associated for transactions, role
ordering (RO) scheduler. Let T7 and T> be a pair of
transactions which are associated with roles R, and R,
respectively, and which manipulate an object o in a con-
flicting manner. Here, the transaction 77 manipulates the
object o before T if the role R is more significant than
the other role R2. This means the more significant job a
transaction does, the carlier an object can be manipulated
by the transaction. In the RO scheduler, conflicting meth-
ods issued by transactions arc ordered in the significancy
of the roles. Transactions can concurrently manipulate
objeets in such an order that persons really do their jobs
in an cnterprise.

In section 2, we present a system model. In section 3,
we newly define significantly dominant relations among
roles. In section 4, we discuss the role ordering (RO) seri-
alizability. In scetion 5, we discuss the role ordering (RO)
scheduler. In section 6, we evaluate the RO scheduler
compared with the two-phase locking (2PL) protocol.

2 System Model
2.1 Object-based system

A system is composed of objects [4] which are dis-
tributed on multiple computers in networks. An object is
an encapsulation of data and methods for manipulating
the data. An object can be manipulated only through
methods. A method is more abstract than primitive
methods like read and write. A pair of methods op; and
op2 supported by an object o are referred to as con flict
with one another iff the result obtained by performing
the methods op; and op2 depends on the computation or-
der. Otherwise, a pair of the methods op; and op; are

— 101 —

compatible with one another.

A transaction is modeled to be an atomic sequence of
methods issued to objects [1]. Multiple transactions are
concurrently performed in order to increase the through-
put of the system. Multiple conflicting transactions are
required to be serializable to keep objects mutually con-
sistent [1,3]. Let T; be a transaction which issues a
method op;; to an object 0) and a method opy; to an-
other object 0o. Suppose there are a pair of transactions
T and T, where op;; and op2; conflict on the object 0, as
well as the methods opi2 and op2; on the object 0z. If the
method op;; is performed on the object oy before opo;,
opa is required to be performed before opz2 on the other
object 0; according to the serializebility theory [1]. In the

timestamp ordering (TO) scheduler [1], each transaction

T; is assigned with real time ts(T;) when the transac-
tion 7T; is initiated on a client. If ts(T}) < ts(T2), the
method opy; is performed before op2; on the object o and
the method op,; is performed before op;2 on the object
0. Thus, a pair of conflicting transactions 77 and T are
performed in the timestamp order.

In the two-phase locking protocol [3], the transaction
T, is performed if a pair of the objects 0; and o2 are locked
before the other transaction T5. The transaction T> can-
not manipulate the objects 0, and o, until the transaction

T releases the objects. In the strict protocol (1], cvery:

transaction releases all the objects locked on termination
of the transaction. Hence, no cascading abort occur.

2.2 Roles

In access control models [6], a system is composed of
two types of entities, subject and object. A subject is an
active entity which issues a request to an object like uscr
and program. On the other hand, an object is a passive
entity 'like database which receives a request and then
sends back its response. A subject can manipulate an
object only through a method which the subject is allowed
to issue. An access right is a pair {0, op) of an object o
and a method op. Only if an access right (o, op) is granted
to a subject s, the subject s is allowed to manipulate an
object o through a method op.

A role shows a job function in an enterprise. Each
subject s plays a role like president in an enterprise. A
subject which plays a more significant role should be more
prioritized than less significant subjects. If a pair of tasks
in different jobs would like to use an object, one task in
a more significant job should take the object earlier than
the other. A task is realized as a transaction.

A role is a collection of access rights in a role-based
access control (RBAC) model (6]. A subject s is first
granted a role R. Then, the subject is allowed to issue
an access request op to an object o only if an access right
{0, op) is included in the role R. Suppose a subject s initi-
ates a transaction T with a role R granted to the subject
s. We assume each transaction is associated with only one
role in this paper. Here, let subject(T) denote a subject
which initiates a transaction T'. Let role(T") show a role
which is associated to a transaction T. A transaction T
issues an access request (o, op) to manipulate an object o
through a method op. The request (o, op) is accepted if
{0, 0p) € role(T). Otherwise, the access request (o, op) is
rejected, i.e. the transaction T is aborted.

The relational database systems take the
discretionary approach [5,7). A role R is first cre-
ated by a subject sg. Here, the subject so is an owner

of the role R, denoted by owner(R). Then, the owner
so grants the role R to a subject s;. Furthermore, the
subject s; can grant the role R to another subject s;. A
role is also an object with methods grant and revoke for
granting and revoking and methods delete and add for
deleting and adding access rights in the role, respectively.
If the subject s; changes the role R, e.g. adds an access
right to R, the role R granted to the subjects sop and sz
is also changed.

3 Significancy on Roles
3.1 Significancy of subjects on a role

We take the discretionary approach to adopting the
role-based access control (RBAC) model [6] to object-
based systems. First, suppose that a subject sy creatcs
a role R. Here, the subject s¢ is an owner owner(R) of
the role R. Then, the owner subject sg grants the role R
to another subject s;. The subject s; furthermore grants
the role R to subjects s; and s3 as shown in Figure 1.
Here, the subject s; is more tightly related with the role
R than the subject s;. This means, the subject s; is
considered to be more significant than the other subject
s2 with respect to the role R.

We define a precedent relation among subjects show-
ing which subjects are more significant than others with
respect to a role R :

e A subject s is more significant than another sub-
ject so with respect to a role R (s; =g s2) if and
only if (iff) the subject s; grants the role R to sp or
81 >R S3 >R se for some subject sj.

—:grant
Q :subject

:owner of role R.

Figure 1. Discretionary approach.

The significantly precedent relation »p of subjects is
acyclic. A pair of subjects s; and s, are independent with
respect to a role R (s || s2) iff 51 and s, are granted the
role R and neither s; >pg s2 nor s2 »g s;. In Figure 1,
an owner subject sg (owner(R)) of a role R is more sig-
nificant than a subject s; (sp > g s1) since the owner s
grants the role R to the subject 3. In addition, s; »p
so and s; >p s3. Thus, so =g 51 >p s2 and sg >R so.
However, s3 ||g s3 and s2 ||g s4.

Let S(R) be a set of subjects which are granted a role
R. Subjects in the set S(R) arc partially ordered in the
significantly precedent relation »gz. Suppose the role R
includes a pair of access rights (o, 0p1) and (o, ops) where
a method op; conflicts with a method op;. A pair of the
subjects s; and s» are granted the role R and issue meth-
ods op, and op2 to the object o, respectively. If the sub-
ject s; is more significant than the subject s, with respect
to the role R (s; >p s2), the method op; is performed
before another method ops on the object o.

3.2 Significancy of roles

We discuss which roles are more significant than other
roles. Suppose a subject s; is granted a role R; and a
subject s is granted another role R,. Then, a pair of the
subjects s; and s2 issuc conflicting methods op; and op2
to an object o, respectively. We discuss which method
opy or opz to be performed on the object o before the
other method. It is true that op; should be performed

— 102 —

before op2 if a job function shown by a role R; is more
significant than another role R, in an enterprise.

A method op; is more significant than another
method ops on an object o (op; > ops) iff the state of
the object o is changed by the method op; but is not
changed by the method ops. Methods by which state of
an object is changed are referred to as object methods.
Object methods are classified into two types : output and
input ones. By using an output type of method, data is
derived from an object while an input type of method
brings data into an object. Furthermore, there are class
methods where an object is created for a class and is
dropped. A pair of methods create and drop of an object
are more significant than the object methods.

Let us consider a pair of methods withdraw and
deposit on a bank object. Both the methods withdraw
and deposit are input types. Hence, the meth-
ods withdraw and deposit are significantly equivalent
(withdraw = deposit). In our life, a subject more care-
fully issues a method withdraw than a method deposit
because the account value in the bank object is decre-
mented by withdraw. This example shows that some
methods are considered to be more significant than other
methods by an application. Here, a method withdraw is
referred to as more semantically significant than an-
other method deposit (withdraw >~ deposit). A seman-
tically significant relation > among methods is defined
on each object by an application. A method op, is re-
ferred to as semantically significantly equivalent with
another method op; (op1 = op2) iff neither op; > opo
nor opy > op1. opy 2= opz iff opy > op; or opy = op2.
[Definition] A method op; is more significant than an-
other method op, (op) > opz) iff one of the following con-
ditions is satisfied:

1. op; is a class type and ops is an object type.

2. op) is an input type and op; is an output one.

3. op1 and op2 are same types and op; is semantically
more significant than ops (op; > op2).

A method op, is significantly equivalent with an-
other method op, (opy, = op2) iff neither op; > ops nor
opy > opy. A method op; significantly dominates an-
other method ops (op; > ops) iff opy > ops or op; = op,.

A system is composed of multiple objects. Objects are
classified into some security classes [2]. An object o; is
more significant than another object 02 (01 > 07) if 0y is
more secure than o, in an enterprise. A pair of objects
o1 and o, are significantly equivalent (0; = 05) if neither
01 > 02 nNor 02 < 0). 0] = o2 if 0 = 02. An object 01
signi ficantly dominates another object o; (0) = 07) iff
01 > 03 Or 0} = 03.

A role is a collection of access rights. Let (0),0p1)
and (02, op2) be access rights on a pair of objects 0; and
02. We discuss which one in the access rights {0y, op;)
and (02,0p;) is more significant than the other. First,
methods op; and op; are supported by a same object
01 (01 = 02). An access right {01,0p;) is more signifi-
cant than (01,0p2) ({o1,0p1) > (o1,0p2)) if op1 > opa.
Next, a pair of methods op; and op, are supported by
different objects o; and oz, respectively (o3 # 02). An
access right {01, op;) is more significant than another ac-
cess right (02, 0p2) ({01,0p1) > (02,0p2)) if 01 = 02 and
opy > ops. Lastly, suppose that an object 0, is more
significant than another object o2 (0; > 02). An access
right {0;, op;) is more significant than another access right

(02,0p2) ({01,0p1) > {02, 0p2)) if 01 > 02.

[Definition] An access right (o0y,0p) is more
significant than another access right (og,0p2) ({01,0p1)
> (02, 0p2)) iff one of the following condition holds:

e op1 > ops if 0y = 0s.
® 01 > 09.

A pair of access rights {(o1,0p;) and (0;,0ps) are
signi ficantly equivalent ({o1,0p1) = (02.0p2)) iff nei-
ther (o1,0p1) > (02,0p2) nor {01,0p1) < (02,0p2). An
access right (o1,0p;) significantly dominates another
access right {oz,0p2) ({01,0m) = (02,0p2)) iff {01,0pm1)
> {02, 0p2) or (01,0p1) = (02, 0p2).

We discuss which role is more significant than another

role based on the significantly dominant relation > of ac-
cess rights.
[Definition)] A role R, signi ficantly dominates another
role Ry (R; = R2) if for every access right (02,0p3) in
R3, there is at least one access right (01,0p1) in Ry such
that (o1,0p1) > (02, 0p2) and no (o3, op3) in Ry such that
{03, 0p3) = {01,0p1)-

A role R; is significantly equivalent with another role
Ry (Ry = R) if Ry » Rz and Ry = R;. A role Ry
is more significant than another role Ry (R; > Rp) iff
R; = Ro but Ry # Ry. A pair of roles R; and R» are
comparable if Ry = Ry or Ry = R;. Otherwise, R, and
R, are uncomparable.

4 Serializability

Suppose a pair of transactions T} and 75 are granted
roles R and Ry, respectively. Each transaction is submit-
ted by a subject and assigned with one of roles granted
to the subject. Let T be a set of transactions which are
being performed in a system. The transaction set T is
partially ordered based on the significantly dominant re-
lation > of roles:
[Definition] A transaction Ty significantly dominates
another transaction Tp (T} = T3) iff role(Ty) = role(T3)
or subject(T\) =g subject(T2) if role(Ty) = role(Tz) =
R.

A transaction T is significantly equivalent with an-
other transaction T, (T7 = T3) if 71 = Ty and Tp = Th.
T, and T, are independent iff neither T > T, nor T =
T).

A schedule H is an execution sequence of methods
from transactions in the transaction set T. A transaction
Ty precedes another transaction T in the schedule H (T
—y T») iff a method op; from T is performed before a
method ops from T> which conflicts with op;. A schedule
H is serializable iff the precedent relation — g is acyclic
according to the traditional theory [1]. A schedule H is
shown in a partially ordered set (T, —).

[Definition] A transaction T} signi ficantly precedes an-
other transaction 75 in a schedule H of a transaction set
T (T] =H Tz) ifT wyg Toand Ty = To.

Suppose a transaction T} precedes another transaction
T3 in a schedule H of a transaction set T. Here, if T} >
Ty, “Ty — g To” is referred to as legal, i.e. T3 significantly
precedes Tp (Ty = T). That is, conflicting transactions
are performed in the significantly precedent relation = 4.
On the other hand, if T} < Ty, “Ty — gy To” is illegal. A
schedule H, i.e. (T,—y) islegal if Ty -y Tr if) >
T> for every pair of transactions T3 and 75 in T. In order
to make a schedule legal, methods from transactions are

- 103 —

required to be buffered until all the transactions are ini-
tiated. Here, the throughput of the system is degraded
since transactions have to wait in the buffer. In order to
increase the throughput, only some number of transac-
tions in T which are initiated during some time units are
scheduled. A schedule H is partitioned into subschedules
H,, ..., H, where each subschedule H; = (T;,—p) (i =
1, ..., n) satisfies the following conditions:

[Role ordering (RO) partition]

1. T; N T; = ¢ for every pair of subschedules H; and
Hj and T, U---uUT, ="T.

2. Ty =y T is legal if Ty —y T, for every pair of
transactions T} and T in T;. ’

3. For every pair of subschedules H; and Hj, if T;; —y
Tj, for some pair of transactions T;, in H; and T},
in Hj, there are no pair of transactions T;» in H; and
Tp in Hj such that 73'2 — gy Tio.

Figure 2 shows a hasse diagram of a schedule ‘H for
a transaction set T = {T\, Tz, T3, Ty, Ts, Ts,} where a
directed edge from a transaction T; to T; shows T; — g
Tj. = and —* show legal and illegal precedent relation
—p. Suppose that Ty = T, T3 = To, Ty = Ts, Ty = T,
Ty = Ts, and Ty = T3. Here, a pair of subschedules H,
with T = {Tl, T, T3} and H, with Ty = {T4, Ts, Ts}
are RO partitions of the schedule H. In the schedule H;,
methods from the transactions T}, T, and T3 are first
performed in the significantly dominant relation >, i.c.
Ty = T> and T3 =y T. Since Tp X Ty and T3 <X T,
the transactions Ty and T cannot be performed as long
as every transaction in H; completes. After T> commits,
the transactions in Hj are performed.

—441la ,Hg\
- =~ Lz ~
,/ T1=>T2 _/‘ ‘:l"4 —_— S\\
] \/)
\\ E /l \\)
\\\\ T}/ \TG _ //
——== : legal ' —p:illegal

Figure 2. Schedule H.

[Definition] A history. H of transactions is RO
serializable if the schedule H is RO partitioned.

It is straightforward to hold that a history H is serial-
izable if H is RO serializable because T; —y T if T; =5
T; for every pair of transactions T; and Tj.

5 Role-Ordering (RO) Scheduler

We discuss a role-ordering (RO) scheduler based on the
significancy of subjects and roles.
5.1 One-object model

First, we discuss a role-ordering (RO) scheduler for a
single object which is manipulated by multiple transac-
tions. An object is stored in an object base (OB) of a
server. Multiple transactions on clients issue methods to
an object 0. A transaction issues a commit (c) or abort
(a) method at the end. An RO scheduler is composed
of a receipt queue RQ and auxiliary receipt quene ARQ.
On receipt of a method from a transaction, the method
is first enqueued in RQ of the object o [Figure 3]. Let
Tr(op) show a transaction which issues a method op.

The following procedures are supported to manipulate
a queue Q.

1. enqueue(op, Q) : a method op is enqueuned into Q.
2. op := dequeue(Q) : a method op is dequeued from
Q.

3. op := top(Q) : a method op is a top method in Q.
4. ROsort(Q) : all methods in Q are sorted in the sig-
nificantly dominant relation > of transactions.
transactions

B- (&

QO :method

Figure 3. RO scheduler.

A variable E shows a set of methods being currently
performed on an object 0. Let TE be a set of transactions
being currently performed, i.c. {Tr(op) | op € E}. A
variable C denotes a transaction which is performed on
the object o and which is significantly dominated by every
transaction performed. Initially, C := T. Here, T and L
denote top and bottom transactions, respectively, where
T = T > 1 for every transaction T. There are following
procedures to perform a method op on the object o:

1. conflict(op, E) : false if E = ¢ or a method op does
not conflict with every method in E, else true.

2. perform(op) : a method op is performed on the ob-
ject o.

Suppose methods in transactions T, ..., Ty, are being
performed, TE = {Tj, ..., T)n}. Methods in T3, ..., T\n
being performed are stored in E. Here, C shows a trans-
action T; where T; X T} forevery j =1, ..., m. If T > C,
the method op is enqueued into RQ. However, if T > C,
the method op is enqueued into ARQ. After that, every
method issued to the object o from every transaction not
in E is enqucued into ARQ. If every transaction in E
commits or aborts, i.e. E is empty, all methods in ARQ
arc moved to RQ. That is, one subschedule is finished
and a new schedule is started. Then, methods in RQ are
sorted in the significantly dominant relation »=.
[Delivery of a method op from a transaction T

if T € TE or T =% C, { enqueue(op, RQ);
ROsort(RQ); }
else { C := 1; enqueue(op, ARQ); }

Methods in the receipt queuc RQ are performed on an
object o as follows:
[Execution of methods]

1. if TE = ¢, { C := T; Every method op in ARQ is
moved to RQ; ROsort(RQ); goto 1; }
2. if conflict(op, E), return;
else{ op : = dequeue(RQ);
if Tr(op) € TE, TE := TE cup {Tr(op)};
E : = E U {op}; if Tr(op) < C, C := Tr(op);
perform(op);}

Let op be a method on an object o, which is the top in
RQ. If the method op is compatible with every method
being currently performed, the top method op is dequeuned
from RQ and then is performed on the object o in OB.
Otherwise, no method in RQ is dequeued.

If a method op completes, the following procedure is
performed :

[Completion of method op]

1. E: =E - {op};

2. TE := TE - {Tr(op)} if op = c or op = q;

3. Methods in RQ are performed in the execution pro-
cedure presented here.

— 104 —

If a top method op; conflicts is kept waited in RQ,
every other method in RQ is required to be waited. Here,
suppose there is another method op; following the method
op1 in RQ. If ops is compatible with op;, op; can be
performed by jumping ever op, in RQ.

[Definition] A method op is referred to as ready in a
receipt queue RQ iff op is compatible with every method
preceding op in RQ and with every method in E.

In the execution procedure, if the top method op (=
top(RQ)) cannot be performed, ready methods in RQ are
taken in the significantly dominant relation > and then
performed. We introduce the following procedures :

¢ ready(op, RQ, E) : true if a method op is ready in
the receipt queue RQ, else false.

e op;: = next(op, RQ) : op; is a method in the receipt
queue RQ which directly follows an method op.

Let op be a top method in the receipt queue RQ.
If op conflicts with some method being performed, i.e.
conflict(op, E) is true, the following procedure is per-
formed:

op : = top(RQ);
if conflict(op, E), {
op : = next(op, RQ);
while(op # NULL) {
if ready(op, RQ, E), {
op is removed from RQ; E : = E U {op};
TE : = TE U {Tr(op)} if Tr(op) € TE;
if Tr(op) < C, C := Tr(op);
perform(op); break; }
else op : = next(op, RQ); } }
[Theorem] A schedule of a transaction set T obtained
by the RO scheduler is RO-serializable.
[Proof] A subschedule obtained from the reccipt queue
RQ is RO subschedule. A schedule of the transaction set
T is RO partitioned into the subsequences.

5.2 Distributed object model

In a distributed model, there are multiple objects o0y,
<.t 0y (m > 1) distributed in servers and multiple trans-
actions Ty, ..., Ti (I > 1) on multiple clients ¢y ..., ¢, (n >
1). Each object o; receives methods from multiple trans-
actions on clients ¢; ..., ¢, while each transaction issues
methods to multiple objects.

There are local receipt queues RQ;, ..., RQ;, in each
object 0; (i = 1, ... , m). Transactions are initiated on a
client ¢, and issuc methods to objects in servers. Methods
issued from transactions on a client ¢; to an object o; are
stored in each local receipt queue RQ;; (s = 1, ..., n). We
assume a communication network supports every pair of
an object o; and a client ¢; with a reliable communication
channel, i.e. an object o; receives every message from each
client ¢, in the sending order and with neither message
loss nor duplication.

Requests in local receipt queues RQ;, ..., RQ;ip are
moved to a global receipt queue RQ); in an object o; [Fig-
ure 4]. Here, requests in the global receipt queue RQ; are
sorted in the significantly dominant relation >. Then, the
top method in the global receipt queue RQ; is dequeued
and then is performed if no method conflicting with the
top method is currently being performed. Question is
when the top method in the global receipt queue RQ;
can be dequeued. Let us consider a pair of transactions
Ty and T3 as shown in Figure 4. The transaction T} is-
sues a pair of methods opy; and op;2 to the objects 07 and

02, respectively. The transaction T} issues a pair of meth-
ods op21 and opsz to the objects 0; and o,, respectively.
Suppose a pair of the methods op;) and ops; conflict on
the object 0; and a pair of the methods op;2 and opas also
conflict in the other object 02. Suppose a method op,, is
delayed and another method opa; is also delayed due to
congestions and faults. In the object o;, the method opy;
is enqueued into the global receipt queue RQ; from the
local receipt queue RQ1, and then performed. On the
other hand, the method op; is performed in the object
o2 as well. Eventually, a pair of the delayed methods op2;
and opj2 arrive at the objects o; and o0, respectively, and
then are performed. Here, a pair of the transactions T}
and T, are not serializable.

' RO, RQ,, @ L]

®——&r o o] ;@c
- >< *
Py

Ge)—1—"] c

Figure 4. Schedulers.

The following conditions have to be satisfied for a col-
lection of global receipt queues RQ, ..., RQ,, for objects
01, ..., Om, respectively, to rcalize the serializability of
multiple transactions :

[Role-based serializability (RBS) conditions]

1. Methods in every global receipt queue RQ); are sorted
in the significantly dominant relation > of transac-
tions (i = 1, ..., m).

2. For a top method op, from a transaction T in each
global receipt queue RQ;, if there is a method op;
from the transaction T; in RQ; which the method
ops precedes and conflicts with op;, op, precedes op;
in every global receipt queue RQ; where op, and op,
are methods form T, and Ty, respectively, and ops
and op, conflict with one another

The second RBS condition shows the traditional seri-
alizability in a distributed database system [3]. The first
condition means that every pair of conflicting methods
are performed in the significantly dominant relation > of
the transactions.

In order to satisfy the RBS conditions, we take the
following approach :

1. Each client ¢, periodically sends a fence message k,
to every object o;.

2. In an object o;, if there is a fence message k; in ev-
ery local receipt queue RQ;;, methods preceding a
fence massage ks in every local receipt queue RQ;;
are moved to the global reccipt queue RQ;;. Then,
a fence message k; is dequeue from the local receipt
queue RQ;,;. Finally, a fence message k, is enqueued
into the global receipt queue RQ;.

3. Methods from the fence method or the top method
to the fence message just enqueued are sorted in the
significantly dominant relation >.

4. A top method in the global receipt queue RQ); is
performed according to the execution procedure.

6 Evaluation

We implemented the RO scheduler and the locking sys-
tem with deadlock detection. We evaluate the role order-
ing (RO) scheduler for a single object in terms of compu-
tation time of each method compared with the traditional

— 105 —

two-phase locking (2PL) protocol. Transactions in clients
issue methods to the RO scheduler and the locking mod-
ule on an object base.

In the evaluation, an object o supports ten types of
methods. We assume it takes same time to perform ev-
ery method. We assume one method can be performed
for one time unit if there is no other transaction. If mul-
tiple conflicting methods are concurrently performed, a
method op has to wait until methods conflicting with op
complete. If deadlock is detected in the locking proto-
col, methods performed in a transaction are undone if
the transaction is aborted to release the deadlock. This
means, it takes longer to perform a method than one time
unit. The computation ratio 7 is defined to be the ratio
of the total number of methods effectively performed to
the total processing time units. If all the transactions are
serially performed, the computation ratio 7 is 1.0 which
is the maximum. 7 = 0 if no method is performed, e.g.
every transaction is deadlocked and aborted. A conflict-
ing relation on the methods is randomly defined so that
each method averagely conflicts with 10 % of the other
methods. There are five roles R, ..., Rs. Each role R;
includes three access rights, which are randomly selected
out of ten possible access rights on the object o.

There are three subjects sg, s1, and s2. The subject s
is an owner of the roles R;, ..., Rs. The subject sg grants
each role to the other subjects. That is, so >R, s1, S0
>R, S2,and s ||, s2 for every role R; (i =1, ..., 5). The
roles are ordered as R; > R > R3, Ry > Ry > Rs, R»
= R4, R2 = Rs, R3 = R4, and R3 = R5.

\ RO sch

e p .

asl2\ 2PL Feee
2 3
E 072
§ osl.t
g s LN i
a .l - —\\1
g a4 %
© 03 ™

02 v

o1 A VERETTIIINL

[} 0 £ 3 0 %

Number of transactions

Figure 5. Evaluation of one-object model.

A transaction issues five methods randomly selected
from the ten methods of the object, where some method
may be invoked multiple times. A role is also randomly
assigned to each transaction.

For each configuration, i.e. object, roles and transac-
tions generated based on the random number, the com-
putation ratio 7 is calculated multiple times in the simu-
lation until the average value of the computation ratio is
saturated. Figure 5 shows the computation ratio 7 for the
number of transactions. The computation ratio 7 = 1.0
shows the maximum ratio. As shown in Figure 5, the RO
scheduler implies higher throughput than the 2PL proto-
col. For example, the RO scheduler implies six times and
ten times higher throughput than the 2PL protocol for 20
and 40 transactions, respectively.

Figures 6 and 7 show average values of processing time
of the RO scheduler and the 2PL protocol, respectively,
for the total number of transactions. The processing time
shows time units from time when a method in each trans-
action which is assigned with a role R; (i = 1, ..., 5) issued
to time when the method completes. In the RO scheduler,
a transaction T; which is assigned with a more significant

role than another transaction T; can manipulate an ob-
ject o earlier than transactions with less significant roles.
On the other hand, the computation order of transactions
is independent of the significancy of roles in the 2PL pro-
tocol.

o H H
Ri —o— R4 ——

g™ R2 Ui RS R
E 0 R3 -ot.-
=
S
o
@ -
8 00 e
ne. .»‘“:Z/é/

0 e y

o o] » r ®

Number of transactions

Figure 6. RO scheduler.

5000
4500 |- ,,: . f- 7 N l
32 P S R2.:M:e RS 20
5 e R3 -+
2 -
£
2 20 LK
] -
- S
€ 10 2 ol
* 1000 f
”—04:/;{; 36) 3
Number of transactions

Figure 7. Two-phase locking (2PL) protocol.

7 Concluding Remarks

We discussed a role ordering (RO) scheduler based on
role concept in this paper. The role is a central concept
to design, implement, and operate information systems.
In this paper, multiple conflicting transactions are seri-
alizable according to the significantly dominant relation
of roles. We also discussed the role ordering (RO) sched-
uler for single-server and multi-server models and how
to implement the RO scheduler. Conflicting methods
from multiple transactions are performed in the signifi-
cantly dominant relation. That is, the more significant
role a transaction is assigned, the earlier methods from
the transaction are performed.

We evaluated the RO scheduler compared with the tra-
ditional two-phase locking protocol (2PL). In the evalu-
ation, we showed the RO scheduler can support higher
throughput than the 2PL protocol.

References

{1] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Con-
currency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[2] D. E. Denning and P. J. Denning. Cryptography and Data
Security. Addison-Wesley Publishing Company, 1982.

[3] J. Gray. Notes on Database Operating Systems. Lecture
Notes in Computer Science, (60):393-481, 1978.

[4] O. M. G. Inc. The Common Object Request Broker :
Architecture and Specification. Rev. 2.1, 1997.

[5] Oracle8i Concepts Vol. 1. 1999. Release 8.1.5.

6] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models. JEEE Com-
puter, Vol. 29(No. 2):38-47, 1996.

7] Sybase SQL Server. http://www.sybase.com/.

8] Z. Tari and S. W. Chan. A Role-Based Access Control for
Intranet Security. IEEE Internet Computing, Vol. 1:24-34,
1997.

— 106 —

