RNF AT 4 THAF LGB T—2 v a7 R 6 HE10A

General Consensus Protocols

Chiaki Yahata, Junko Sakai, and Makoto Takizawa

Dept. of Computers and Systems Engineering
Tokyo Denki University

Ishizaka, Hatoyama, Saitama 350-03, JAPAN

E-mail {chii, jun, taki}@takilab.k.dendai.ac.jp

Abstract

Distributed applications are realized by cooper-
ation of multiple processes interconnected by com-
maunication networks. In the distribuled applica-
tions, o group of processes have to make consen-
sus. In this paper, we discuss o general model
of consensus protocol which is composed of four
steps, i.e. pre-voting, voling, global decision, and
final local decision. We describe various consen-
sus protocols like two-phase commitment one in
terms of the model. In the general consensus pro-
tocol, the process can change the mind afier noti-
fuing other processes of the opinion, various kinds
of global decision logics can be adopted, and the
coordination among the processes is conirolled in
ceniralized and distribuied schemes.

1 Introduction

Distributed systems are composed of multiple
processors interconnected by communication net-
works. Distributed applications are realized by
the cooperation of multiple processes, each of
which is computed in one processor. The dis-
tributed applications like a groupware are realized
by a group of multiple processes which are coop-
erated by communicating with one another. The
processes in the group have to make some consen-
sus in order to do the cooperation among them.
There are kinds of consensus protocols required by
various distributed applications and distributed
database systems [9]. For example, the two-phase
commitment (2PC) [6] and three-phase commit-
ment (3PC) [10] protocols are used to realize the
atomic commitment (2] among multiple database
systems, that is, all database systems either com-
mit or abort the transaction. In the commitment
protocols, each process cannot change the mind
after notifying other processes of the vote, i.e.
Yes(commit) or No(abort). After sending the vote
to the coordinator process, the process is in an un-
certain state [10], where all the processes can do is
wait for the decision from the coordinator because
every process cannot change the vote. However,
in the human society, individuals often change the
minds even after notifying others of the votes. For
example, individuals often change the schedules if
they have to do higher-priority jobs than the jobs
in the schedules decided. In other applications, if
some processes make an agreement even if the oth-
ers disagree with them, the processes may make

consensus. For example, in a meeting of multi-
ple individuals, something may be decided if a
majority of the participants agree on it. In ad-
dition to the atomic commitment, various kinds
of decision logics have to be considered. When
considering the cooperation of multiple processes,
we have to think about what process coordinates
the cooperation among the processes. In the 2PC
protocol, the coordinator process plays a role of
the centralized controller. In some meeting, there
is no chair, i.e. every participant makes decision
by itself. In addition to the centralized control,
we have to consider the distributed control where
there is no centralized controller.

In this paper, we assume that the communi-
cation network is reliable, i.e. each process can
deliver messages to any processes with no mes-
sage loss in the sending order. In addition, we
assume that the network is not partitioned. We
would like to discuss a general framework of con-
sensus protocols in the presence of process fault,
i.e. stop-by-failure. The following points have to
be taken into account when thinking about the
general consensus model :

1 each process can change the opinion even af-
ter notifying other processes of the opinion,

2 each process can express the opinion No-idea
and Anyone-OK in addition to Yes and No,

3 various kinds of decision logics like all-
or-nothing and majorily-consensus can be
adopted,

4 each process may be autonomous for the
group ie. it may not obey the global deci-
sion, and

5 how to control the coordination among the
processes, i.e. centralized and distributed
controls.

In this paper, we discuss a general consensus pro-
tocol which is composed of four steps, pre-voting,
voting, global decision, and final local decision.

In section 2, we present a general model of con-
sensus protocol. In section 3, we would like to
discuss various consensus protocols based on the
general model.

2 General Consensus Model

2.1 Examples

A distributed system is composed of multiple
processors interconnected by communication net-

works. A distributed application is realized by the
cooperation of n (> 0) processes py, ..., pn, cach
of which is computed in one processor. In the
distributed applications, p;, ..., pn have to make
some consensus among themselves.

Example 1] The distributed database system
9] includes multiple database systems as the pro-
cesses. In order to commit a transaction manip-
ulating multiple database systems, it has to be
guaranteed that the transaction either updates all
the database systems or more of them. It is an
atomic commilment [6, 10]. There is one coor-
dinator process po in the two-phase commitment
(2PC) protocol [2, 6]. If a transaction would ter-
minate, po sends Vote Reg message to all the pro-
cesses py,...,Ppn. BEach p; sends Yes message to
po if p; could commit the transaction. If not, p;
sends No to pg and then aborts the transaction.
If py receives Yes message from every process, po
sends Commit to py,...,p,. If po receives No, po
sends Abori to all the processes voting Yes. On
receipt of Commit, p; commits the transaction.
Figure 1 and Figure 2 shows the 2PC protocol in
a case that the transaction commits, and aborts,
respectively. O

Po n Pn
VoteReq
Y
b —
Y A f time

Figure 1: Two-phase commitment(Commit)

DPo) j 58 . Pn
VoteReq

>

—
\1%.

Y Y ttme
Figure 2: Two-phase commitment(Abort)

The commitment protocols like 2PC and 3PC pro-
tocols assume the following points:

1 no process can change the opinion after vot-
ing it,

2 the decision logic is based on the atomic com-
mitment, i.e. all-or-nothing principle,

3 there is one centralized controller, i.e. the co-
ordinator which coordinates the cooperation
of the participate processes py,:-, pn.

4 process is not autonomous, i.e. it obeys the
decision of the coordinator, and

5 No dominates Yes, i.e. processes voting No
abort unilaterally without waiting for the de-
cision from the coordinator, and processes
voting Yes may abort if the decision of the
coordinator is Abort.

Next, we would like to consider a more general

example in the human society.
[Example 2] Let us consider an example that a
group of individuals would like to go eating lunch
together. Firat, the individuals in the group ex-
change the tentative opinions on going out. Here,
one individual may say “I would like to go eating
lunch together”. Someone may say “No, I would
not like to go eating lunch together”. One may
say “I have no idea”. After %istening to them,
each individual expresses the opinion, i.e. Yes,
No, No-idea, or Anyone-OK. Someone may ex-
press the opinion different from one which he ex-
pressed first. This means that he may change his
mind here,

Now, the group obtains the opinions from all
the individuals. The group has some logic to de-
cide whether to go lunch. For example, only if all
the individuals in the group agree on going eating
lunch, they may go eating. They may go eating
lunch if a majority of the group agree on it. Here,
suppose that the group obtains a global decision,
say “go eating”.

Next point is whether each individual obeys the
global decision or not. One individual p may obey
the global decision even if the global decision is
different from the opinion of p. If p is autonomous
for the group, p may not obey the global decision
if p would not like to obey it. For example, some
individual may not go eating lunch together with
the group even if it is globally decided to go eating.
u]

When considering the applications like the
groupware as presented in the example, the as-
sumptions on the commitment protocols have to
be relaxed. Following the examples, the general
consensus protocol has to take into account the
following points :

1 each process can change the opinion even af-
ter notifying other processes of the opinion,

2 each process can express the opinion No-idea
in addition to Yes and No,

3 various kinds of decision logics like ali-
or-nothing and majorily-consensus can be
adopted,

4 each process may be autonomous, i.e. it may
not obey the global decision, and

5 There are kinds of coordination among the
processes, i.e. how to control the coordina-
tion among the processes, i.e. centralized and
distributed controls.

2.2 General consensus protocols

A consensus protocol coordinates the coopera-
tion among processes py, ..., Pn in order to reach
some decision. The general consensus protocol is
composed of the following four steps.

(General consensus protocol]

1 First, each process p; is required to express

the opinion. p; notifies all the processes of its

opinion py; which is named a pre-vote of p;.
This step is referred to as pre-voting.

2 p; receives all the pre-votes pvy, ..., pv, from
P1, ..+, Pn. pi makes a local decision on the
basis of pv,, ..., pv,,. Here, p; can change
the tentative opinion again. p; expresses the
opinion py; obtained by the final local de-
cision. Formally, p; obtains the vote v; =
Vi{pyys -y pu,‘s. Here, V: is a function
which gives some value for a tuple of values
PUy, ..+, PUn- Pi sends v; to all the processes.
This step is referred to as voting.

3 For the votes vy, ..., v, obtained from p,
«.+s Pn, @ global decision v = GD(v,, ...,
vn) is obtained. GD is a function which gives
v for a tuple of the votes vy, ..., v,. All
the processes are informed of v. This step is
referred to as globael decision.

4 p; obtains the global decision ». Based on
v and the votes vy,---,v,, p; makes the final
decision and obtains d; = LD;(vq, ..., ¥n, v).
LD; is a function which gives the final local
decision d; from the votes v;,...,v, and v.
This step is referred to as final local decision.
o

The consensus problem is defined as follows.
Let D be a set {d;,---,dn,, L, T} of values. Here,
L means that it is not decided which one from
dy,---,dm, i8 taken, e.g. process p; has no idea
on the decision. T means that any of dy,--,dm
is allowed, e.g. p; can vote anyone of d;,:-+,d,
Initially, p; has one value pv; in D as the pre-vote.
V; is a function from)D" into D, i.e. for every

i ED(i=1,...,n), ¥ y ey = €
%U.J For egcample, if p; has g’;u‘ldea, p?l:\no)tiﬁes all
the processes of L. p; receives the pre-votes pv,,

.., pv,, from all the processes. Based on the pre-
votes obtained, p; makes the final local decision
by V;. For example, if p; obeys p;’s opinion, v;
= Vi(pvy, --., pv,) = pv;. Here, it is noted that
v; may be different from pv;. While listening to
other opinions, i.e. pre-votes, p; can change the
opinion. p; notifies all the processes of the vote v;
obtained by V;.

Here, all the votes vy, ..., v, are collected by
one process or every process. The global decision
v= GD(vy, ..., vy) is obtained. GD is a function
from D™ into D. As an example, let us consider
the atomic commitment where D = {1,0,1,T}.
Each process means a database server. Each pro-
cess p; votes v; € {1, 0}. If all the processes vote
1, they commit. If at least one process votes 0, all
the processes abort. Hence, GD(vy, ..., 95) = 1
ifvj=1forj=1,...,n GD(v1,...,v) =0 if
some v; = 0. If the global decision is a value voted
by a majority of the processes, GD(vy,...,15) =
vif [{uilvi = v} > 3.

Each process p; receives the global decision v.
Problem is how p; behaves on obtaining v, i.e. p;
obeys v or not. p; has to obey v if p; is not au-
tonomous. If p; is autonomous, p; may not obey v
even if v is decided globally as presented in Exam-
ple 2. p; makes a final local decision by LD;(v,,
<oty Un, V). LD; is a function from D™**+! to D.
For example, if p; makes the decision of v; inde-

pendently of v, LD;(vy, ..., v, v) = v. If p;
agrees on v, LD;(vy,...,vn,¥) =v. If p; depends
on another p;, LD;(vy,*+,¥n,v) = v;.
2.3 Process states

A local state of each process p; is given as a
tuple (pv;, vi, d;) where pv; is the pre-vote, v; is
the vote, and d; is the value finally decided by
pi- pi changes the local state on receipt of mes-
sages. Here, let D be {1,0, L, T} for simplicity.
First, let us consider an initial state of p;. Ta-
ble 1 shows the possible initial states of p;. Type
1, i.e. (1,1,1) means that p; initially decides the
decision of 1 and notifies all the processes of it.
p; never changes the mind. p; makes the deci-
sion of 1 whatever the global decision is. Type 2,
(1,1, L) means that p; makes the final local de-
cision based on the global decision while voting
1. Type 3, (1,.L, L) means that p; has only the
tentative opinion. p; expresses some vote based
on pre-votes of other processes. Type 4, (L, L, 1)
means that p; has no opinion. Type 5, 6, and 7
are dual of 3, 2, and 1, respectively. (T,T,T) of
Type 8 means that p; can vote anyone of 1 and 0.

For every state {a,b,c), b=c= 1l ifa = L
and c = Lif b= L. A state {a,b,c) is referred

Table 1: Initial states

Type | py;

oA HHH~
~ o H] H HH

00 ~J Ox O] o L NN
— o o o -]]

to as transitable if b = 1 or ¢ = L. For example,
(1,1, 1) can be changed to (1,0, L) while (1,1,1)
can not be changed. (a,b,c) is referred as mind-
changeabdle if b = 1. For example, after expressin

(1,1, 1) as the pre-votes 1, p; can have (1,0, L

as the vote 0 different from the pre-vote.

For e,b, and c € D, if (a,b, L) is changed to

a,b,¢c), ¢ is referred to as dominate b if b # ¢
written as ¢ > b). For example, in the commit-
ment protocol, 0 > 1 because the process vot-
ing 0 only aborts, never commits as shown Fig-
ure 2. Figure 3 shows the state transition of the
two-phase commitment (2PC) protocol. (0,0,0
means that a process voting 0 aborts. (1,1,1
means that the process votes 1, Up to the global
decision, (1,1, 1) is transited to (1, 1,1) if the pro-
cess commits, (1,1, 0) if the process aborts.

D is a partially ordered set on <. Since T can
be changed to any value in D, T can be considered
to be a botiom of D, i.e. for everydin D, T < d.
A value d; in D is referred to as minimel in D
iff there is no value dp in D such that dx < dj.
For example, in the two-phase commitment (2PC)
protocol, D = {1,0,.L,T}, 0 is minimal in D. If
D has only one minimal value d named minimum,
i.e. for every d) in D, d < d), each process p;
can vote the minimum d instead of voting T. For

example, in the 2PC protocol, p; can vote 1 if p;
can commit and abort. A value d; in D is referred
to as mazimal in D iff there is no value d in D
such that dp < di. If there is only one maximal
value d in D, i.e. for every d) in D, dy < d, dis
the top of D. If p; votes d, p; never changes the
mind.

For every pair of d; and d, in D, the upper
bound of d; and d, is a set {d|d € D,d, < d, and
dy < d}. di Ud,, denotes the least upper bound
(lubd) of di and dj if the upper bound of dy, and
d;. exists. If not exists, dy Udy = L

Let {a,b,c) be a state. If b is maximal in D,
¢ has to be b because process voting b cannot
change the vote. Hence, if b is maximal, ¢ = b,
ie. ?a, b,b). For example, if b = 0, i.e. process
p; votes No, ¢ = 0, i.e. p; aborts, i.e. (0,0,0).
Thus, if b is maximal, {a, b, ¢} cannot be transited
into another state. The state (a,b,c) where b is
maximal is referred to as mazimal. Here, let us
consider a state transition from a state éa, by, 1)
into (g, b3, c2) where b, is not maximal. It b < b3,
or by = by and ¢; < ¢3, {8, by, ¢1) can be transited
into {a, b3, c2). For example, 1 < 0in the 2PC pro-
tocol. {1,1,.L) can be transited into (1,1,0) and
{1,1,1) while (0,0,0) cannot be transited. Pro-
cesses which are in a transitable state after voting
have to wait for the global decision. On the other
hand, processes which are in a maximal state can
terminate, because they made their decisions al-

ready.
(11 i, -L)i(l, 1, 1)

(0,0,0) (1,1,0)

Figure 3: State transition of two phase commit-
ment

2.4 Global decision

After obtaining the votes vy,..., v, fromall the
processes py, . .., Pn, the global value v is globally
decided by using the function GD : D™ — D.
For every tuple {(vy,---, v,.,z € D", GD(v1,+++,vn)
gives some value v in D. If vy U -Uv, X v, ev-
ery process p; can change the vote v to v. Un-
less v; < v for some i, p; cannot change the vote
to v. For example, suppose that there are three
database systems A4, B and C, which votes 0,
i.e. abort, votes 1, i.e. commit, and 1, respec-
tively, in the 2PC protocol. If GD(0,1,1) = 0,
B and C can change the vote, i.e. can abort.
On the other hand, suppose that GD(0,1,1) = 1.
A cannot commit because B aborts already al-
though B and C can commit. Here, GD is re-
ferred to as regular if for every (vy,---,vn) € D,
nU--+Uvy <X GD(v1,---,vn). If GD is regular,
every process can change the vote into the global
decision. If not, some process p; may not obey the
global decision unless v; < v.

_ There are the following kinds of global deci-
sions:

1 Commitment decision : GD(vy,...,%,) =1
if every v; = 1, GD(vy,...,%,) = 0 if some
v; = 0 where D = {1,0,1,T}.

2 Majority-consensus decision on
v: GD(vy,...,vn) = v if {ulvi = v} > 3,
otherwise GD(vy,...,vp) = v U - U,

3 (») -decision on »: GD(v1,...,9,) = v

every v; = v, otherwise GD(v1,...,v) =
9 U Uy,

4 (») -decision on v GD(vy,...,vn) =
v if {wju = v} > r, otherwise

G (1)1,...,1)" =y U---Uvy,.
5 Minimal-decision: GD(vy, -, vs) = vU---U
Un.

In the commitment decision, only if all the
votes are 1, 1 is globally decided. If some process
votes 0, 0 is decided. It is used by the 2PC pro-
tocol. The commitment decision on {0,1,1,T}
named a binery commitment can be extended to
D = {d1, - +,dm, L, T}. GD(vy,::+,va) = v if
every v; = v. If some v; is not v, GD(vy,*++,v,) =
93 U---U,. vy U-+-Uu, means a value to which
every v; can be changed. If such a value does not
exist, i.e. 1 U---Uv, = 1, nothing is decided. In
the 2PC protocol, 1 < 0. Hence, if some v; = 0,
ywU.--Uuy, =0.

In the majority decision on v, if a majority
votes some v, v is globally decided. Otherwise,
nothing is decided if v U---U v, = L.

In the (7) -decision on v, if all the processes
vote some v, v is globally decided. Otherwise,
nothing is decided if v U+--U v, = L,

In the (1) -decision on v, if »(< n) processes
vote some v, v is globally decided. If » > %, the
() -decision is the majority one on v. In the

minimal decision, every process p; agrees on the
value v = v;U-- -Uv, where v is minimal in values
which every v; can be changed to. If v, U+ U, =
A, nothing is decided. The binary commitment
decision is a kind of the minimal decision.

In addition, GD can be defined based on the
application semantics. For example, if every pro-
cess obeys p;’s opinion, GD(vy,...,vn) = v;.

2.6 Control schemes

Another point is concerned with which process
coordinates the cooperation among the processes
P11y Pn. If One process po named a coordinator
coordinates the cooperation of the processes, it is
referred to as centralized control. The 2PC [6} and
3PC (10] protocols are the examples of the central-
ized control. In the centralized control [Figure 4],
every p; first sends the pre-votes pyv; to po. po
collecta pvy,...,pun, and sends (pvy,...,pun) to
P1y+-+yPn. On receipt of {pvy,..., pvs), pi decides
the vote v; = Vi(pvy,...,pvn). pi sends v; to po.
On receipt of all the votes vy, ..., v,, po makes the
global decision of v = GD(vy,...,v,), and then
sends v to py,...,pn. On receipt of v, p; makes
the final local decision of d; = LD;(v1,...,Vn,v).

If there is no centralized controller, it is referred
to as distributed control. In the distributed con-
trol [Figure 5], each process p; sends the pre-vote

PUi 10 B1,+..1Bn. O receipt of pvy, ..., pun, Py
makes the local decision of v; = Vi(pvy,...,pun)

1 Y
: local decision (V)

: global decision (GD)

: final local decision (LD)

Figure 4: Centralized control

I time

oaQ¢b

Figure 5: Distributed control

by itself. p; sends the vote ¥; to p1,...,pn. On re-
ceipt of vy, ..., v,, every p; makes the same global
decision of ¥ = GD(vy,...,vs). Then, p; makes
the final local decision of d; = LD;(v;,..., vy, v).
Each p; has the same GD and makes the deci-
sion by itself on the basis of GD. p; can make
the decision without waiting for the decision from
the coordinator. In the distributed control, ev-
ery process p; has to send message m to all the
other processes. If the broadcast network is used,
p; can send m to all the processes by issuing one
data transmission request of m to the network. If
not, p; has to issue n requests.

3 Consensus Protocols

We would like to describe various consensus
protocols in terms of the general model.

3.1 Atomic commitment

First, we would like to present the atomic com-
mitment protocol [6, 10] as shown in Figure 1 and
Figure 2. In the commitment protocol, suppose
that 1 means commsit and 0 means abort.

Since each process cannot change the mind, the
pre-vote is the same as vote. All the processes
voting 0 abort unilaterally, i.e. without waiting
for the global decision. The initial state of each
process p; is either {1,1, L) or {0,0,0). {0,0,0) is
a maximal state since 0 is maximal. On the other
hand, processes voting 1 can not only commit but
also abort up to the global decision. Hence, 0
dominates 1, i.e. 0 > 1.

Only if all the processes vote 1, they commit. If
some process votes 0, all the processes abort. The
global decision GD is the commitment decision,
GD(1,...,1)=1and GD(...,0,...) =0. GD
is regular.

The final local decision is LD;(vy, ...,un, ¥)
= v because p; voting 1 obeys the global decision.
That is the processes voting 1 are not autonomous.

3.2 () -decision

Here, the (7)-decision means that the global
decision on d ia d if at least r» processes vote d,
otherwise L, where » < n. Here, let D be {1,0, T}
and let us consider the (»)-global decision on 1.

Figure 6 shows an example of (])-consensus

protocol among three processes p,, pz, and p3 in
the centralized control where pp is a coordinator.
First, p1,pz, and p3 send the pre-votes 0, 1, and

Po P1 P2 P3

fiime

Figure 6: Example

0 to pg, respectively. pp collects the pre-votes as
{0,1,0) and sends it to p1,p;, and p;. Based on
the pre-votes {0,1,0) received from pg, p2 votes
1, and p3 votes 0 by using their local decision
functions Vy, V2, and Va, respectively. Here, py
changes the mind from 0 to 1 and then votes 1.
On receipt of votes from p;, p3 and p3, po makes
the global decision of 1 by the (])-decision logic
on 1 because two py and p; of three processes vote
1. po sends 1 to p;, p2, and pa. p1, pz, and p3
obeys 1. Here, neither 0 > 1 nor 1 > 0. There is
no top value. The states (#,1, .l.z and (*,0, 1) can
be transited which * is some value in D. That is,
after voting, every process p; has to wait for the
global decision from po.

3.3 Extended commitment protocol

As presented before, each process can vote ei-
ther 1(Yes) or 0(No) in the conventional commit-
ment protocola. We would like to extend the com-
mitment protocol so that each process can vote L
(no idea) and T (Anyone-OK). In the commit-
ment protocol, each process p; may not be able to
vote even if p; receives Vote Req from the coordi-
nator pg, ¢.g. p; is too heavy-loaded to vote. In
such a case, p; can vote L instead of voting Yes or
No, or p; can be considered to vote L if no reply
of VoteReq is received in some time units. Pro-
cesses voting L or T are referred to as undecided.
Processes voting 0 or 1 are referred to as decided.
First, we would like to present the basic protocol.
[Basic protocol]

1 First, the coordinator pp sends VoteReq to all

the processes py,...,p,, e.g. if a transaction
T finishes all the operations.

2 On receipt of Vote Req from py, each p; sends
1 or 0 to py as presented in the commitment
protocol. In addition, p; may send L to p,
if p; could not decide 1 or 0. p; may send T
to po if p; could commit or abort the trans-
action.

3 If po receives 1 from all the processes and po
would like to commit, pp sends Commit to
P1,--+Pn- If po receives 0 from at least one
process and p; would not like to commit, pg
sen_;l_s Abort to all the processes voting 1, L,
or .

4 Here, some process p; votes L. If all the de-
cided processes vote 1, py sends Commitable
to the undecided processes.

5 If p; votes L, on receipt of Commitable, p;
sends 1 to pg if p; could commit, 0 to po if p;
could abort. p; sends L to py again if p; still
could not decide 1 or 0.

6 If py could not receive 1 or 0 from all the un-
decided processes after sending Commitable
m(> 1) times, po sends Abort to all the pro-
cesses, i.e. voting 1 or 0.

7 After voting 1, 1, or T if p; receives Abort
from po, p; aborts. After voting T and 1, if
p; receives Commit from po, p; commits. O

Figure 7 shows the state transition diagrams
of the coordinator py and process p;. Here, a/f8
means that S is sent on receipt of a. a// means
that « is received by every process.

Next, let us consider a case that some process
stops by failure. Suppose that pp faults after each
process p; votes before sending the reply toall the
processes. After voting, each process p; voting 1
or L invokes the following termination protocol if
p; times out.

(Termination protocol]

1 p; sends StaieReq to all the processes.

2 On receipt of StateReg from p;, each process
p; sends the local state to p;, ie. 1 if p;
votes 1, 0 if p; votes 0, L if p; votes 1,
if p; votes T, Commitable if p; receives Com-
mitable, Commit if p; receives Commit, and
Abort of p; receives Abort,

3 p; makes the decision by the termination rule
if p; receives the replies of StateReq. O

CM/

PO,
@
N VR: VoteReq CH: Comnit CA: Comnitable

PD: Pre-DecisionAB: Abort

TN

(b)Process P

Figure 7: State transition diagram

[Termination rule]
1 If p; receives Commitable from some process,
p; commits if p; votes 1 or T.

2 If p; receives Aboriable from some process, p;

aborts.

3 If p; receives L from some process and p;

votes L, p; aborts.

4 Ifp; receives 1 from all the processes, p; waits.

5 If p; votes L and receives the states except

Commit or Abort, p; votes 1 or 0. D

If all the operational processes are in the state
of 1, they have to wait, i.e. block like the two-
phase commitment (2PC) protocol [10].

Next, suppose that a process p; recovers from
the failure. Suppose that p; records the local state
in the log L;. p; invokes the following recovery

rocedure if p; recovers.
Recovery protocol]

1 p; restores the state where p; failed by using

ie
2 If p; is not in a state of Commitable, Aboried,
1, or T, p; asks other processes in the same

3

3.4 Distributed

way as the termination protocol.
If p; is in a state of 1 or T, p; aborts. O

extended
commitment protocol

Next, we would like to consider the distributed
control of the extended commitment protocol pre-

sented in the preceding subsection.

Pi1,...,Pn cooperate as follows without any cen-

Processes

tralized controller.
[Basic protocol]

1
2

3

7

Some p; broadcasts VoteReq to all the pro-
cedses.

On receipt of VoteReq, p; broadcasts the
votes, i.e. 1,0, L, or T.

On receipt of 1 from all the processes, p; com-
mits.

On receipt of 0 from some process, p; aborts.
If p; receives 1 from at least one process and
1 or T from the all the other processes, p;
commits.

If p; receives 1 from at least one process and
1 or L from all the other processes, p; waits.
If p; times out, p; sends VoteReq to the pro-
cesses voting L.

If p; votes L, on receipt of VoteReq, p; votes
by step 2. O

Suppose that p; stops by failure. If p; had not
received the vote of p;, p; invokes the termination
protocol.

[Termination protocol]

1

2
3

4

p; broadcasts State Req to all the operational
processes.

On receipt of State Req, p; sends the state.
On receipt of the states from all the processes,
E‘- makes the decision by the termination rule.

Concluding Remarks

This paper discugses general framework of var-
ious consensus protocols. The general consensus
protocol is composed of four steps, i.e. pre-voting,
voting, global decision, and final local decision.
We have described various consensus protocols in

terms of the model.

By committing the proce-

dures for pre-voting, voting, global decision, and
final local decision, we can make the consensus
protocols required in the applications.

References

(1]

[2

-

(3

Barborak, M., Malek, M., and Dahbura,
A., “The Consensus Problem in Fault-
Tolerant Computing,” ACM Computing Sur-
veys, Vol.25, No.2, June 1993, pp.182-
184,198-199.

Bernstein, P. A., Hadszilacos, V., and Good-
man, N., “Concurrency Control and Recov-
ery in Database Systems,” Addison- Wesley
Publishing Company, 1987, pp.222-261.

Birman, K. P,, Schiper, A., and Stephenson,
P., “Lightweight Causal and Atomic Group
Multicast,” ACM Trans. on Compuler Sys-
tems, Vol.9, No.3, 1991, pp.272-314.

[4] Ellis, C. A., Gibbs, S. 1., and Rein, G. L.,
“Groupware,” Comm. ACM, Vol.34, No.l,
1991, pp.38-58.

Fischer, J. M., Lynch, A. N., and Paterson, S.
M., “Impossibility of Distributed Consensus
with One Faulty Process,” Journal of ACM,
Vol.32, No.2, 1985, pp.374-382.

(5)

[6) Gray, J., “Notes on Database Operating Sys-
tems, An Advanced Course,” Leciure Notes
tn Computer Science, No.60, 1978, pp.393-

481.

Lamport, L., “Time, Clocks, and the Or-
dering of Events in a Distributed System,”
Comm. ACM, Vol.21, No.7, 1978, pp.558-
565.

Lamport, L. and Shostak, R., “The Bysan-
tine Generals Problem,” ACM-
Trans.Programming Languages and Systems,
Vol.4, No3,1982, pp.382-401.

Ozsu, M. T. and Valduriez, P., “Principle
of Distributed Database Systems,” Prentice-
Hall, 1990.

Skeen, D. and Stonebraker, M., “A For-
mal Model of Crash Recovery in a Dis-
tributed System,” IEEE Computer Sociely
Press, Vol.SE-9, No.3, 1983, pp.219-228.

Turek, J. and Shasha, D., “The Many Faces
of Consensus in Distributed Systems,” Dis-
tributed Computing Systems, IEEE Com-
puter Sociely Press, 1994, pp.83-91.

[7

—

(8]

E

[10]

(11)

