MRNFAF 1 THREEHABRT—H a3y ERIIEIZA

Role-Based Purpose-Oriented Access Control
for Object-Oriented Systems

Tsunetake Ishida, Katsuya Tanaka, Hiroaki Higaki,
and Makoto Takizawa :
Tokyo Denki University
Email : {tsune, katsu, hig, taki}@takilab.k.dendai.ac.jp

Various kinds of disiributed applications are developed by using object-oriented technologies like CORBA, which
are widely used to realize the interoperability among the applications. In addition to realizing the interoperability,
it is essential to make the distribuled objects securely maenipulated. The purpose-oriented access conirol model
introduces a purpose concept to the access conirol model in the distributed objects. The purpose shows why a
subject manipulates an object by invoking o method. In this paper, we discuss the purpose-oriented access conirol
model in the object-oriented sysitem and furthermore discuss how lo incorporate role concepis in the purpose-

oriented model.

1 Introduction

Various kinds of object-oriented systems [2] have
been developed by using object-oriented languages like
C-+++ and JAVA [9]. Object-oriented systems are com-
posed of multiple objects. An object is an encapsula-
tion of data and methods for manipulating the data.
The objects are structured with is-a relations in the
object-oriented systems while the objects are not re-
lated with #s-a in the object-based systems. The Com-
mon Object Request Broker Architecture (CORBA)
[12] is now getting a standard framework for realizing
the interoperability among various kinds of distributed
applications. In addition to realizing the interoper-
ability, the applications are required to be secure, i.e.
objects not only have to be protected from illegally
manipulated but also have to be prevented illegal in-
formation flow [4,14,6] among objects.

In the basic access control model [10], an access
rule is specified in a form (s, o, op) which means that
a subject s is allowed to manipulate an object o by
invoking a method op of the object 0. A pair (o, op)} is
an access right granted to the subject s. Only requests
which satisfy the access rules are accepted to be per-
formed. Otherwise, the requests are rejected. The
access control model implies the confinement prob-
lem [11], i.e. illegal information flow may occur among
subjects and objects in the system. In order to make
every information flow legal, the latiice based access
control model [1,4,14] is proposed. The legal informa-
tion flow is given by classifying objects and subjects
and defining the can-flow relation f4] between classes
of objects and subjects. In the mandatory model, the
access rules are specified by an authorizer so that only
the legal information flow occurs. For example, i a
subject s reads an object o, information in o flows to
s. Hence, the subject s is allowed to read the object
oonly if a can-flow relation from o to s is authorized.
In the discretionary model [3,5,6), access rules are

defined in a distributed manner while the mandatory
access rules are specified only by the authorizer in a
centralized manner. For example, a subject can grant
other subjects an access rule granted to the subject
in the relational database systems like Oracle [13] and
Sybase [16]. In the role-based model [7, 15, 18], a role
is defined to be a collection of access rights, which
show a job function in the enterprise. The access rule
is specified by granting subjects the roles only if the
subjects can play the roles in the enterprise while each
subject is granted.an access right in the access control
model. The role-based model is now being used in
various kinds of applications since it is easier to grant
access rights to subjects.

The traditional access control models discuss what
subject can manipulate what object by what method.
The authors [17,19)] newly propose a purpose-oriented
model which takes into account a purpose concept why
each subject manipulates objects in the object-based
system. In the object-based system, methods are in-
voked in a nested manner. The purpose is modeled
to be a method which invokes another method in the
object-based system. It is critical to discuss how to
specify access rules in the nested invocation of meth-
ods. One way is that a method op; of an object o,
can invoke a method op; of an object oy if a sub-
ject which invokes op; is granted an access right (o,
opz). Sybase [16] adopts the ownerskip chain mecha-
nism where op; can invoke op; if the owner of o5 is the
same as o; even if s is not granted an access right (o,
opz). It is not easy, possibly impossible to authorize
access rules for huge number of autonomous objects
and subjects. Another way is to speedily whether op;
can invoke op; only if o, is granted an access right (03,
opz). We take this object pairwise approach.

In addition, we discuss how to incorporate the role
concepts into the purpose-oriented model in an object-
oriented system where methods are invoked in the

—121—

nested manner.

In section 2, we present the role concept the object-
oriented system. In section 3, we discuss the purpose-
oriented access control model. In section 4, we discuss
information flow.

2 System Model

2.1 Object-oriented system

Object-oriented systems are composed of objects.
Objects are encapsulations of data and methods for
manipulating the data. There are two kinds of ob-
jects; classes and insiences. A class is defined to be
a set of atiribuies and methods. An instance is a tu-
ple of values, each of which is a value of an attribute
in the class, with the methods of the class. A term
“object” means an instance in most object-oriented
environment like JAVA and C++-.

A method of an object is invoked by sending a re-
quest message to the object. The method specified
in the request message is performed on the object on
receipt of the request. Then, the object sends the re-
sponse back to the sender of the message. The method
may further invoke methods in other objects. Thus,
the invocations of the methods are nested.

A class can be derived from one or more classes.
Here, suppose a class ¢; is derived from a class ¢;.
c2 is referred to as a subcless of ¢;. In turn, ¢y is a
supperclass of c3. The class ¢3 inherits the attributes
and methods of ¢;. Here, ¢; is-a ¢;. Inheritance pro-
vides means for building new classes from the exist-
ing classes. A class may override the definition of at-
tributes and methods inherited from the supperclass.

Suppose that a method op; of an object o; invokes
a method op; of an object o;. There are types of
invocations, i.e. synchronous, asynchronous, and one-
way invocations. In the synchronous invocation, the
method op; blocks after invoking opa until receiving
the response of op;. This is a well-known remaote proce-
dure call (RPC). In the asynchronous invocation, op,
does not block and continues the computation after
invoking op;. However, op; eventually receives the re-
sponse from op;. This is similar to fork in Unix. In
the one-way invocation, op; neither blocks after in-
voking op; nor receives the response from op;. op; is
performed independently of op,. In the invocation of
opz by op;, the object 0; plays a role of subject and
o, plays a role of object in the access control model.
In the nested invocation, the subject-object relation is
relative. In this paper, we assume that every invoca-
tion is synchronous.

2.2 Roles

Each subject plays some role in an organigation,
e.g. professor, assistant, and student in a university.
A role represents a job function that describes the au-
thority and responsibility in the organization. Each
person is assigned some role and then plays the role
in the organization. In the role-based access control
model [7,15,18], a role is modeled to be a set of access
righis. An access right is given a pair of a method op
and an object o which supports op, i.e. (o, op). That
is, a role means what method can be performed on
what object. A subject s is granted a role r only if

s plays the role r in the organization. On the other
hand, each access right is granted to subjects in the
access control model. Here, a subject s is referred to
as bound with the role r if r is granted to s. This
means that s can perform a method op on an object
o if (o, op) € r. For example, let us consider two roles
Professor and Student in a university. In the univer-
sity, professors give examinations to students. Then,
the students write answers in the examination papers,
and the professors mark the examination papers. An
object Paper shows an examination paper. Paper sup-
ports methods make which writes questions in the pa-
per, write which writes answers for the questions in the
paper, and mark which marks the paper. Marks which
the students obtain at the examinations are kept in
record in another object Record. Record supports
methods record which stores the marks of the papers
for students, look which reads the record, and change
which changes the marks stored in the record. Here,
a role Professor is {(Paper, make), (Paper, mark),
(Record, record), (Record, change), (Record, loobz}
and Siudent is (Paper, write), (Record, look)}.
the role-based model, a person who plays a role of
Professor in the university is granted the role Profes-
sor. A student is granted the role Student, i. e. a
collection of access rights. Thus, it is easier to grant
subjects access rights than the access control model.

Some roles are hierarchically structured to repre-
sent logical authority and responsibility in an orga-
nization. If a role r; includes every access right of
another role r;, r; is referred to as higher than r; (rj
=< ;). The relation “<" is transitive. Here, the roles
r; and r; are uncomparable if neither r; < r; nor r; <
r;. Here, let us consider an Assistant who can mark
the examination papers and just look at the record,
that is, Assistant = { (Paper, mark), (Record, look)
}. Here, Assistant < Professor since Professor D As-
sistant. Professors cannot write answers in examina-
tion papers although they can make and mark the
examination papers. However, Studeni can write pa-
pers. Therefore, Student is uncomparable with Pro-
fessor and Assistant.

In a role-based model, each subject s can manip-
ulate an object o by invoking a method op of o only
if s is granted a role including an access right (o, op).
If a subject 5 would like to exercise the authority of
a role r with which s is bound, the subject s first es-
tablishes a session to the role r. Then, s can play a
role of r, i.e. s can manipulate o by op. For example,
a subject s can perform a method mark on an object
Paper while a session between s and a role Professor
or Assisiant is established in Figure 1. The number of
sessions which each subject can establish at the same
time can be restricted to be one.

2.3 Authorization in nested invocations

Suppose that a subject s invokes a method op; on
an object 0; and then op; invokes a method op; on
another object o;. Here, suppose s is granted an ac-
cess right (01, op;). In one way, only if s is granted an
access right l(o,,op;), op; is allowed to invoke op; on
behalf of s. In is cumbersome to specify access rights
for each object. In Sybase [16], the ownership chain

—122—

assignment..‘.. - m:,[‘?/?eds\
| J..-.-"". | mark
[t e
Assistant |* '
Student > .

Figure 1: Roles.

method is adopted. Here, if the object o; has the same
owner as the object 0; and s is granted an access right
(01,0p1), op; can invoke op; even if s is not granted an
access right (03, opz). Otherwise, op; is allowed to in-
voke op; only if s is granted the access right (o3, 0p2).
Suppose the response of op; carries some data derived
from the object o;. On receipt of the response, the
object o2 may store the data carried by the response
in itself, e.g. the data is stored in the file of 0; while o,
continues to perform op; by using the response. This
means, information in o, flows to 0; through the invo-
cation. The data may flow to other objects by further
invocations. Thus, illegal information flow may occur
by using the ownership chain method.

In this paper, we assume the system is composed
of multiple autonomous objects, i.e. each object may
have a different owner. Furthermore, it is difficult,
maybe impossible for each autonomous object to grant
access rights to subjects. In this paper, we take an
object pairwise approach where access rules are au-
thorized for a pair of autonomous objects o; and o;.

3 Purpose-Oriented Access Control

3.1 Purpose concept

The purpose-oriented model [17, 19] newly intro-
duces a purpose concept to the access control model.
A purpose shows why each subject s manipulates an
object o by invoking a method op of 6. In the object-
based system, methods are invoked in the nested man-
ner. Suppose a subject s invokes a method op; of an
object 0, and then op; invokes a method op; of an ob-
ject 0. In the purpose-oriented model, op; invoking a
method op; of an object o, shows purpose for what o;
manipulates oy, while the access control model speci-
fies whether or not 0, can manipulate o; by invoking
op;. For example, suppose that a person s would like
to withdraw money from a bank object B. In the ac-
cess control model, the person s can withdraw money
from B if an access rule (s, B, withdraw) is specified
by the authorizer independently of purpose for what
s spends the money. On the other hand, s can get
money from the bank B for purpose of house-keeping
but not for drinking. A purpose-oriented access rule
(s : house-keeping, B : withdraw) is specified where a
method house-keeping of the object s shows the pur-
pose. Finally, the method op; of the object 0; can

invoke opz of 03 only if the access rule {0, : op1, o3 :
opy) is specified.

3.2 Hierarchical system

A role is specified in a collection of access rights
in the role-based model (7,15, 18]. We extend the
purpose-oriented access control model to incorporate
the role concept. In the object-based system, objects
are related in the invocation relation. Let us consider
consumer and producer objects as an example [Fig-
ure 2]. Consumer objects send requests to Retailer
objects to purchase goods. Retailer objects sell the
goods if they have. Otherwise, the Retatler objects or-
der Wholesaler objects to send the goods. The Whole-
saler objects obtain the goods from Producer objects.
Consumer objects invoke methods supported by Re-
teiler objects but invoke neither methods supported by
Wholesaler nor Producer objects. The Retailer objects
invoke methods supported by the Wholeseler objects
but invoke neither Producer nor Consumer objects.
The Wholesaler objects invoke methods supported by
the Producer objects but invoke neither the Retailer
nor Comnsumer objects. The Producer objects never
invoke methods supported by the Consumer, Retailer,
and Wholesaler objects. In this example, the objects
can be classified into some levels. Objects at a level
can invoke methods supported by objects of a lower
level but cannot invoke objects of a higher level. Such
a system is referred to as Aierarchical system.

An object o, is higher than another object o3 (0; >
0z) iff a method of 0, invokes a method of o3 or 0 > 03
> 03 for some object 03. Here, Consumer > Retailer
> Wholesaler » Producerin Figure 2. The objects are
hierarchically structured in the system iff o > o does
not hold for every object o, i.e. > is irreflexive. A pair
of objects 0; and o; are at the same level (0, = o) iff
neither o; > 03 nor 03 > o0y. For example, every pair
of Retatler objects are at the same level. Objects at
the level 0 are objects which are not invoked by any
other objects. The Consumer objects are at level 0.
Objects at the level ¢ are objects which are invoked by
objects at level 2 — 1. In this paper, we assume that
each object belongs to one level. That is, each object
at level 7 invokes only methods of objects at level i4-1.
Objects which do not invoke methods of other objects
are at the lowest level and named primitive objects.
A hierarchical system is one where the objects are hi-
erarchically structured. In this paper, we consider a
system where objects are hierarchically structured in
the invocation relation.

We consider roles in a hierarchical system. A role
of a level i is a collection of access rights on the objects
at the level 3. Let R be a role of a level 7 which is
{ (0", op) | o is an object of the level i and op is a
method of o; }. For example, let us consider a role.
The TravelAgent and Hotel objects are at level i and
i+ 1, respectively. The BookTravel and Book are the
methods of Traveldgent and Hotel, respectively. Trav-
elTeller is role at level i and, TravelConsulient and
HotelCustomer are roles at level ¢ + 1 if TravelTeller
includes an access right (T'ravelAgent*, BookTravel)
and, TravelConsultant and HotelCustomer include an-
access right (Hotel'+!, Book), respectively. Here, The

—123—

level 0 Consumer

level | Retailer

level 2 | wholesaler| Wholesaler2

.}\

Producer?

level 3

Producer 1

Figure 2: Hierarchical structure.

method BookTravel of the object TravelAgent® in
the role TravelTeller can invoke the method Book of
the object Hotelit! in the role TravelConsuliant and
HotelCustomer [Figure 3].

TravelTeller

BookTravel

level {

‘HotelCustomer

TravelAgent

level i+1

Figure 3: Hierarchical role.

Suppose that a method op; of an object oy invokes
op; of 0;. Here, 0, is at a level i and o, is at level
i+ 1. We also suppose that an access right {0y, oplg
is in a role R;. The method op, invokes a metho
op; of an object o3 which is at level i + 1. At level
i+ 1, the access right (o3,0p;) is included in roles
Ryt and B%'H. If an object o; is bounded with a role

R, 0, is allowed to invoke the method op; of the
object o;. This is a simple extension of the role-based
meodel to the hierarchical object-based system. Let
us consider the travel agent example shown in Figure
2. The method BookTravel of the Traveldgent object
invokes a method Book of the Holel object.

Each method op; of an object o; is granted a role
r; = {(0i1,0pi1), .., (Oin;,0pin;}}. This means, the
method op; can invoke a method op;j of an object oy;
(fer j =1, ..., k). In turn, op;; may be granted a
role Ty = {(ogj1,0p£j1), veny (oijh;j:OPijhij)}' op;; can
invoke a method opyj; of o;;: if op;; is granted the
role r;;. An access rule has to show in what role the
method op; -of the object o; is bound with the role r;.
[Purpose-oriented role-based access (POR)
rule] (r : o; : opi, r;) means that a method op; of

an object o; is invoked in a role » and op; can invoke
methods specified in a role r;. D

[Example 1] Suppose that there are two roles enter-
tainment and house-keeping including access right (p,
drinking) and (p, shopping), respectively. A person p
plays the roles in a community and manipulates the
bank object b by authority of its role. If the method
drinking of p is invoked in the role entertainment, p
is allowed to withdraw money from the bank b. How-
ever, p is not allowed to do so if drinking of p is in-
voked in the role house-keeping. Thus, the access rule
is specified in a form (enieriainment : p : drinking,
b : withdraw) where the method drinking shows the
purpose of p. O

session

— entertainmen
/ ! <p. drinkingg\ n
withdraw
-] invoke invoke _
session -

erson p
P bank b

Purpose-oriented role-based access rule @
<entertainment : p : drimking, b : withdraw>

Figure 4: Purpose-oriented role-based access.

3.3 Class role

The object-oriented systemn is composed of classes
and objects, i.e. instances of the classes. There are
two kinds of access rights, cless and instance access
rights. A class access right is in a form (c, op) where
c is a class and op is a method of the class c. On the
other hand, an instance access right is in a form (o,
op) where o is an object and op is the method of o.

There are two kinds of roles, i.e. class roles and
instance roles. A class role r is defined in terms of
methods and classes, i.e. r = {(c, op) where cis a
class and op is a method of c}. On the other hand,
an instance role r’ is defined in terms of methods and
objects, 1.e. 7 = {(o, op) where o is an object and
op is a method of o}. r is instantiated from the class
role r. In the instance role ', o is an object which is
instantiated from a class e.

class role'r
cliss €
instance-of l

instance role r'

Figure 5: Class role and insﬁance role.

—124—

For example, a class role member is defined as mem-
ber = {{computer, use}} in Figure.6. A class role mem-
ber is bound to a class student, i.e. {student, member).
This means that the class student is authorized to ac-
cess to the class computer by the method use and au-
thority of the class role member. On the other hand,
an object p is instantiated from a class student as an
instance of student. PC; and PC; are also instanti-
ated from a class computer. If p would manipulate
PC4 in the system, an instance role member is instan-
tiated from a class role member to control the access
between p and PC;. An instance role member is asso-
ciated to p. Even if PC; is an instance. of computer,
(PCq, use) does not exist in the instance role member
where p should not manipulate PCj.

memb:
> (< computer, use>)
name : string CPU "R
age : integer Memory : '
)
t HDD .)
' msrar.mawd
iﬁlSla:lCc-Of | class level

I
e s e e e e e

instance level}

Figure 6: Instantiation of class and role.

Furthermore, there is an is-e relation in object-
oriented systems. The ts-a relation is defined among
classes. We extend the role concept to conform to the
is-q relation. Suppose that there are two classes c;
and c;. The class c; is defined as a specialization of
the class ¢y, i.e. ¢z 1s-a ¢;. The access right {c3, op) is
automatically included in the role r where # is given
as {{cy, op)}. This means that the access right of spe-
cialized class is given to the role when the role has an
access right of its supperclass.

4 Information Flow Control

In the role-based access control model presented in
the previous section, it is assured that subjects ma-
nipulate objects based on roles to which the subjects
belong. However, illegal information flow among ob-
jects may occur. Because legal and illegal information
flow among the objects are not discussed. For exam-
ple, in Figure 7, suppose that a subject s; invokes write
on an object o; after invoking read on o; by the au-
thority of a role r;. This means that s; may write data
obtained from o; to o;. s; can read data in o; even
if read access right is not authorize to a role r;. This
is the confinement problem pointed out in the basic
access control model. In addition, a subject can have
multiple roles in the role-based model even if they can
play only one role at the same time. Suppose that a

person A belongs to two roles chief and clerk. A per-
son A obtains some information from book as a clerk
and then stores the data derived from the information
into book as a chief,

\session _ method— 0;
™ ‘M,....-ﬂ-'| read l
role 7; i
»
5 I
. % assignment
session
—-— role 7;
e]" , / R
s, ., 4 —method— 0;
4 (| write
read

Figure 7: Illegal information flow.

We classify methods of objects with respect to the
following points:

1. whether or not a value v; of attribute ¢; from an
object o; is output.

2. whether or not a value of @; in o0; with input pa-
rameter is changed.

The methods are classified into four types in mp, mw,
mpw, and my. mg means that the method outputs
a value but does not change o;. my means that the
method does not output but changes o;. The method
mpw outputs a value and changes 0;. The method
myy neither outputs a value nor changes o;. For exam-
ple, a method couni-up is classified to be my because
count-up changes the state of the object but does not
need input parameter. count-up does not bring infor-
mation into an object.

[Example 2] Let us consider a simple example about
information flow between a pair of objects o; and o;
in shown Figure 8. A subject s is now in a session
with a role ;. Here, s can invoke methods classified
into mp on o; and maw on o; by the authority of r;,
respectively. If s obtains information from o; through
mpg, s can invoke mgw on o; after the invocation of
mpg on-o;. Because a set of rojles on o; which is autho-
rized to execute methods classified into mp is a subset
of roles on o; which is aithorized to perform methods
classified into mp. O

5 Concluding Remarks

This paper has presented an access control model
for distributed object-oriented systems with role con-
cepts. Roles are higher level representation of access
control models. We have defined a role to mean what
method can be performed on which object. Further-
more, we have discussed how to control information
flow to occur through roles.

—126—

Access control list

. 0
Access control list 4
roll Mgw

rk mW

Figure 8: Information flow control.

References

[1] Bell, D. E. and LaPadula, L. J., “Secure Com-
puter Systems: Mathematical Foundations and
Model,” Mitre Corp. Report, No. M74-244, Bed-
ford, Mass., 1975.

[2] Bertino, E. and Martino, L., “Object-Oriented
Database Management Systems : Concepts and
Issues,” IEEE Computer, Vol. 24, No. 4, 1991,
pp. 33-47.

[3] Castano, S., Fugini, M., Matella, G., and Sama-
rati, P., “Database Security,” Addison-Wesley,
1995.

[4] Denning, D. E., “A Lattice Model of Secure In-
formation Flow,” CACM, Vol. 19, No. 5, 1976,
pp. 236-243.

[5) Denning, D. E. and Denning, P. J., Cryptography
and Date Security, Addison-Wesley, 1982,

[6] Ferrai, E., Samarati, P., Bertino, E., and Jajodia,
S., “Providing Flexibility in Information Flow
Control for Object-Oriented Systems,” Proc. of
1997 IEEE Symp. on Security and Privacy, 1997,
pp. 130-140. '

[7] Ferraiolo, D. and Kuhn, R., “Role-Based Access
Controls,” Proc. of 15th NIST-NCSC Nat’l Com-
puter Security Conf., 1992, pp. 554-563.

[8] Harrison, M. A., Ruzzo, W, L., and Ullman, J.
D., “Protection in Operating Systems,” CACM,
Vol. 19, No. 8, 1976, pp. 461-471.

[9] Gosling, J. and McGilton, H., “The Java Lan-
guage Environment,” Sun Microsystems, Inc,
1996.

[10] Lampson, B. W., “Protection,” Proc. of 5th
Princeton Symp. on Information Sciences and
Systems, 1971, pp. 437-443. (also in ACM Op-
erating Systems Review, Vol. 8, No. 1, 1974, pp.
18-24.)

[11] Lampson;, B. W., “A Note on the Confinement
Problem,” CACM,; Vol. 16, No. 10, 1973, pp.
613-615. '

[12] Object Management Group Inc., % The Common
Object Request Broker : Architecture and Spec-
ification,” Rev. 2.1, 1997.

[13]) Oracle, Corporé,tion, “Qracle Server Administra-
tor’s ‘Guide Release 8.0,” 1997.

[14] Sandhu, R. S., “Lattice-Based Access Control
Models,” IEEE Computer, Vol. 26, No. 11, 1993,
Pp. 9-19.

[15] Sandhu, R. S., Coyne, E. J., Feinstein, H. L.,
and Youman, C. E., “Role-Based Access Control
Models,” IEEE Computer, Vol. 29, No. 2, 1996,
Pp- 38-47.

[16] Sybase, Inc., “Sybase Adaptive Server Enterprise
Security Administration,” 1997.

[17) Tachikawa, T., Yasuda, M., and Takizawa, M.,
“A Purpose-oriented Access Control Model in
Object-based Systems,” Trans. of IPSJ, Vol. 38,
No. 11, 1997, pp. 2362-2369.

(18] Tari, Z. and Chan, S. W., “A Role-Based Ac-
cess Control for Intranet Security,” IEEE Inter-
net Computing, Vol. 1, No, 5, 1997, pp. 24-34.

(19] Yasuda, M., Higaki, H., and Takizawa, M., “A
Purpose-Oriented Access Control Model for In-
formation Flow Management,” Proceeding of 14th
IFIP Int’l Information Security Conf. (SEC’98),
1998, pp. 230~239.

—126—

