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many non-Lambertian sw€es behave like Lambertian surface
at the area with no highlight, we can treat a highlight pixel as

Photometric stereo is a technique to estimate surface orienta-an outlier which deviates from the Lambert model. Therefore, it
tions of a static object from a set of images captured by a fixed would be possible to simultaneously estimate the shape of a non-
camera [12]. It assumes the object follows Lambertian reflectanceLambertian surface and the response function of a camera by in-
model, illuminated by known varying light sources. A number of corporating what so-called robust estimation techniques such as
techniques have been developed to overcome such assumptiorRANSAC [2] into the auto-radiometric calibration technique. We
and allow photometric stereo in more general circumstances, un-conducted a number of experiments to demonstrate that our pro-
known light sources and non-Lambertian surfaces. posed method can accurately estimate the shape of given objects

Another common assumption that often presumed in the com-with non-Lambertian surface and the response function regard-
puter vision algorithms, include photometric stereo, is input im- less of its nonlinearity.
ages must be captured by a camera with linear response func- The contribution of this work is to achieve an auto-radiometric
tion, i.e. the image intensity is proportional to the irradiance re- calibration in photometric stereo technique that can handle non-
ceived by the camera sensor. Unfortunately, the response funcLambertian surface. Our method requires neither radiometric cal-
tions of the consumer cameras are generally nonlinear and un4bration nor additional images for the calibration; it allows pho-
known. Moreover, a camera setting such as white balance af-tometric stereo for more real-world materiadsy. ceramics, and
fects the response function. Therefore, the radiometric calibra-plastics. The shape estimation can be performed without worry-
tion is required to be preprocessed to cancel ftifiece of non- ing about the nonlinearity of the response function in a camera.
linear response function before the images can be used in any The rest of this paper is organized as following. Section 2
physics-based analysis of the scene. We proposed a photometribriefly describes the related works. A photometric stereo method
stereo with auto-radiometric calibration technique by exploiting to simultaneously recover surface normals of a non-Lambertian
data that inherents in the photometric stereo images to recover thebject and an inverse response function is explained in Section
response function [8]. However, this technique assumes an objecB. The experimental results are shown in Section 4 followed by
with Lambertian reflection property so the estimated shape andconclusion remarks in Section 5.
response function are distorted by specular highlights observed
in non-Lambertian surfaces. Moreover, we cannot directly apply 2. Related Works
the specular detection techniques to this case because of nonlin- This work relates to radiometric calibration and specularity re-
ear response function. moval. The most widely used technique for radiometric calibra-

In this paper, we propose an auto-radiometric calibration pho- tion was proposed by Mitsunaga and Nayar [7]. They make use
tometric stereo technique for non-Lambertian surface. Becauseof multiple images taken with fierent known exposure times.
The ratios between pixel intensity and exposure time are used to
L RGUR A EHATRT R estimate a response function. However, this method requires a lot
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of additional images and considered time-consuming. eSlail
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[11] proposed a radiometrizalibration technique that uses input Ep Il 1z Nox
images for color photometric stereo. This method makes use of _ .
. . . . . . - npy >
the linearity of RGB color in the same pixel along an input im- | | | n
. . . Z
age set to estimate a response function. However, this method Epp bx by 1Dz P
cannot recover the response function from a gray object and can- Ep = Ly, )

not be used with graysFaIe |n.put images. Mongkulmeinail [8] wherelg = (I lgy. l42)T aNdnp = (Mo, Ny M) T
proposed an auto radiometric calibration method for grayscale  Gijyen light source directions and intensities are known, the sur-

photometric stereo. This method estimates surface normals anq,ce normals and its albedo can be estimated from at least three
response function simultaneously using consistency between ir'images by least square method:

radiance calculated from response function and irradiance calcu-
lated from surface property. However, it requires specular-free p = (LTL)_l LTEp. 3)
input images. Thus, we cannot apply this technique to a non-
Lambertian object without the removal of specular component
first. Otherwise, the estimated response function is distorted by i D .
specularity. np = arg fﬂ;nz (Epa - npla) . (4)
To solve specularity problem in photometric stereo, one can d=1
regard specular pixel as an outlier and exclude it from surface es-The surface normal and albedo are computed from the estimated
timation. Coleman and Jain [6] took this approach and proposedscaled surface normaly"asrip/ 7| and|n| respectively.
a photometric stereo technique for non-Lambertian surface us-
ing four light sources. They estimated four candidate albedos at3.2 Simultaneous Estimation of Surface Normals and In-
a certain location from four possible triplets selected from four verse Response Function
light sources. If all of the candidate albedos do not consistent, it We briefly explain a photometric stereo technique for estimat-
is because of specularity. The smallest albedo is used for surfacéng surface normals and inverse response function at the same
estimation. Barsky and Petrou [1] modified this method to detect time. The radiometric response functidnmaps an irradiance
both highlights and shadows by using temporal pixel intensity and E to a pixel intensityl. Because response function is a mono-
linear dependency. Unfortunately, these techniques assume inputonic increasing function, we can find an inverse functjen f -
images are captured by a camera with linear response functionwhich maps a pixel intensity back to its corresponding irradiance.
Therefore, we cannot directly apply these methods as an individ-We normalize the range of irradiance and pixel intensity to [0, 1]
ual step before the automatic response function technique due tovithout loss of generality.
the nonlinearity of response function. We assume the inverse response funcgi@an be represented
Our proposed method extends the Mongkulmann’s photomet-asK-degree polynomials similar to [7],
ric stereo framework [8] to handle a non-Lambertian surface. Un- «
like t_he prewog.s wgrk, our p.ropo_sed m.ethod a_v0|ds using specu- E=g(l)= Z alX, (5)
lar pixel intensities in the estimation by integrating what so-called pary
robust estimation such as RANSAC [2] to determine specular re- wheregy is the codficient of thek-th polynomial. With boundary
gion and estimate response function at the same time. RANSACcondition E(0) = 0 andE(1) = YKo = 1, we can derive the

has been used by several works to handle specular highlights irvelationship between irradianéeand pixel intensityl as,
face recognition task [10] and to remove specularity from non-

This is equivalent to

K
Lambertian surfaces in photometric stereo [5] [4]. Mukaigaiva E=cyl+ Z el
al [9] uses RANSAC to classify fluse and specular region using k=2
images taken underfiiérent light sources. K
=1+ (- 1). (6)
3. Proposed Method k2
3.1 Conventional Photometric Stereo Then, we can formulate a linear least square problem to find

Firstly, we briefly explain the classic photometric stereo the appropriate surface normals and thefiicients
method [12]. It assumes a target object follows the Lambertian
model illuminated under varying directional light sources. The

irradi ; S . ({Rp), {&}) = arg  min
irradiance at the poirp observed under thé-th directional light {

nphi{c})

source is represented as P D K 2
> > Epa-npEa+ Y o (&~ lpd)| - @)
p=1 d=1 k=2
Epd = ldnp, (1) . .. .
subjects to the monotonicity constraint,
wheren, denotes the normal vector at the pomscaled by its K
albedo andy denotes thel-th light source direction scaled by Z c(1- klk‘l) < 1. (8)
its intensity @ = 1,2,...,D). Conventionally, eq.(1) can be ex- k=2
pressed in the matrix form as whenE > 0.
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Fig. 1 The overviewof our proposed method; (5)ramdom pixels are sampletipixel intensities from
each sampled pixel are used. (2) Inverse response function is estimated and the input images are
calibrated using the estimated function. (3) Specular regions are detected and removed. The dif-
fuse pixels are considered inliers. (4) The estimated response function and the estimated shape are

evaluated. Step 1-4 are repeated for some iterations to obtain the best specular-free images. (5)
The specular-free images are used to estimate response function and shape.

1. Randomly select pixels.

3.3 Extension for Non-Lambertian Surface selected pixel intensities. If all of the selected pixel intensities do
This subsection explains the method to handle specularity ob-not consist of specular component, we can determine an inverse
served on non-Lambertian surface. response function with eq.(7) subjects to the constraint eq.(8).
We iteratively estimate the response function and surface nor-Then, the input images are mapped by the estimated inverse re-
mals. In each iteratiors random pixels are sampled ahgixel sponse functiow into the irradiancezovserved
values from each sampled pixel are selected. Then, the selecte®tep 3. Specular Region Detection and Removal
pixel values are used to estimate a candidate inverse response The specular regions are detected and removed in this step. We
function and the input images are radiometrically calibrated using utilize a simple pixel intensity comparison which is similar to the
the estimated function. Here, we assume the response function i®ne in Barsky [1]. Given specular region is observed within some
accurately estimated so we perform specular removal at this stedimited light directions, we can regards a specular pixel intensity
to extract the dfuse regions. Then, theftlise regions are used as an outlier that does not satisfy the Lambertian model. We apply
to estimate surface normals. The accuracy of the estimated reRANSAC here to iteratively determine the largest subset of pixel
sponse function is evaluated to consider the one that matches théntensities that do not contain specularity. Then the appropriate
input images the best. Finally, thefidise areas from the itera- surface normals is estimated from th&ase pixel intensities.
tion with the best response function are used to reestimate the Assume that the set of images is radiometrically calibrated and

response function and surface normals. converted into their corresponding irradianEe For each point
The detailed algorithms are given as following. p, three irradiance valueB,;, E,j, andEy where 1< i, j,k < D,
Step 1. Pixels Random Selection are randomly selected. If the selected irradiance values contain

We select a number of pixel values to estimate a candidate in-only diffuse component, this becomes the classic photometric
verse response function. Given the whole set of images are af-stereo case. A unique surface normals can be determined
fected by the same response function, we can use only a smalby eq.(4). Consequently, we can estimate the irradiaﬁ’gg‘é“a‘ed
subset of pixel intensities to estimate the response function. Letfrom thed-th light sourcelq and the estimated surface normals
K denotes the degree of polynomials. Firstypixels are ran- np; the estimated irradiance must be equals to its corresponding
domly selected. Then, the number of required pixel intensities observed irradiancEggse”e‘? On the other hand, if the selected
for a selected pixep is determined. Since there are 3 unknowns irradiance values contain a specular component, the estimated

for surface normals for each pixel selected, nanmgly n,,,, and surface normals becomes distorted andE@?ma‘edbecomes in-
Npz PlusK — 1 unknowns for the coeflicients of inverse response consistent to théggse“’e‘? Therefore we measure the goodness
function, therefore can be written as, of the estimated surface normals by the number of inliers whose

estimated irradiance equals to the observed one. The irradiance
Eggser"edis considered an inlier if following condition is satisfied,

3xs+K-1
t= {—w . 9)
s
For each selected pixel,pixel intensities from the same pixel |E§3timated_ Eggsewe? < TSEggservegi (10)

along the set of images are randomly selected.
Although we did not mention for the sake of simplicity, shad- wherersis a threshold.
ows and saturated pixel intensities are removed from the estima- The combinations of three irradiance valugg,, Ep;j, andEp,
tion by thresholding. The pixels which have number of pixel in- are selected iteratively to obtain a distribution of surface normals.
tensities less than three after the removal are also excluded fronTThen, the surface normais, is estimated from the inliers of the
the selection. iteration with highest number of inliers. The specular detection
Step 2. Estimation of a Candidate Inverse Response Function  and surface estimation are performed on every foreground pixel
A candidate inverse response functipis estimated using the  to acquire the surface normats
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Step 4 Evaluationof the Candidate Inverse Response Func-
tion

The accuracy of the estimated inverse response function is
evaluated. If the inverse response functjoand the surface nor-
malsn are accurately estimated, the irradiarg&’seedwhich
mapped by the inverse respongenust consistent with the irra-
diance calculated from the surface property. Hence, we calculate
the irradianceE®smadwith the surface normala. We deter-
mine the supporting inliers with the same criterion to the specular
detection. The irradianoEggse"’edsupports the estimated inverse . ‘ ‘
response function if it satisfies eq.(10). 0 02 04 06 08 1

The step 1 to 4 are repeated for many iterations to get a num- radiance
bers of candidate inverse response functions. The inliers for the
inverse response function with the largest number of supports are
considered dfuse pixel intensities by consensus.
Step 5 Estimation of the response function and surface shape

In this step, the diuse pixels are used to estimate the inverse
response function and the surface normals. The eq.(7) and (8)
are used once again to reestimate theffaments of the inverse
response functio@, and the surface normats ffom the dituse
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We verify our proposed by experiments using both synthetic Irradiance

images and real objects. We used MATLAB implementation of Fig. 2 Response functions used in teperiments. (top) Agfapan-apx-

the trust region reflective quadratic programming for the opti- 400CD (bottom) Agfa-scala-200xCDStandard

mization. We decide the number of iterations for surface estima-

tion and response function estimation as suggested in Fischler[2] specular detection is similar to the ground truth, the distorted ar-
eas due to specularity can be easily spotted in the disparity map

number of iterations: '09(1‘P3 } (11) (e). Figure 5 shows the result from the images taken with a dif-
log(1~w") ferent response function.
wherep is probability that all selected pixéltensities are inliers We plotted the estimated inverse response function in Figure 6.

at least oncey is probability that a selected pixel intensity is an The plotted function and RMS error were computed using the pix-
inlier andn denotes sampling size. we set 0.8 empirically and els with intensities less than the ninetieth percentile of the largest

n = tsfor the estimation of response function, we et 3/D pixel intensities. This is because the number of brigliiude
andn = 3 for the specular detection. We get 0.99, r = 0.06, pixels is small due to specularity so the estimated function where
s =1, and degree of polynomialé = 6 are selected empirically  the pixel intensity is near 1 cannot be constrained well and there-
for both synthetic images and real objects cases. fore is not accurate. Moreover, the error propagates to the scale
of the estimated response function because we formulate the rela-
4.1 Synthetic Images tionship between irradiance and pixel intensity with the boundary

We evaluate the performance of our proposed method by com-conditionE(0) = 0 andE(1) = 1. Therefore, our algorithm has a
paring the result with that of the classic photometric stereo[12] kind of ambiguity in the scale of the estimated response function.
and result from auto-radiometric calibration photometric stereo This ambiguity does notfgect the estimated surface normals but
for Lambertian surface[8] using synthetic images. The synthetic it affects the overall scale of the estimated albedos instead.
images were a sphere with uniform albedo and specular fac- Table 1 shows quantitative results: the average of the angular
tor. We randomly picked ten light directions around the ob- error of estimated normals maps compared to the ground truth,
ject. We applied two response functions, namely agfa-scala-and the root mean square error of the scaled estimated functions
200xCDsStandardl and agfapan-apx-400CD, from the DoRF to the compared to the ground truth. The errors from our method
database[3] to the rendered images to emulate ftieeteof non- are decreased as there is no distortion due to specularity. The root
linear response function. mean square errors show that our method can accurately estimate

Figure 4 shows the color coded normal map for the ground the shape of the inverse radiometric response function.
truth (a), the estimated ones from our proposed method (b), the
estimated ones from the auto-radiometric calibration photometric4.2 Real Images
stereo without specular detection (d), and the estimated ones from We evaluate the performance of our proposed method by com-
classic photometric stereo (f). Although the estimated surface paring the result with that of the classic photometric stereo[12]
from the auto-radiometric calibration photometric stereo without and result from auto-radiometric calibration photometric stereo

(© 2013 Information Processing Society of Japan 4
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Fig. 3 Synthetic images: Sphere
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Fig. 4 Estimated normal maps of treynthetic images: sphere (agfapan).
(a) the ground truth, (b) normals map from our proposed method
and its diferent to ground truth, (d) normals map from the auto-
radiometric calibration photometric stereo without specular removal,
(f) normals map from the classic photometric stereo. (c) (e) (g) show

angular difference of the estimated normal maps to the ground truth.

Table 1 Estimation results for the synthetic sphere. Average of the angu-
lar error of estimated normal map, and the RMS error of estimated
response function.

Surface Surface Surface | Inverse

normal normal normal | response

(classic) | (auto-calib.) | (ours) function
Sphere(agfapan) 153 0.6° 0.2° 0.001
Sphere(agfascala) 4.24° 0.7 0.3° 0.004

for Lambertian surface[8] using the imagefsreal objects. The

Vol.2013-CVIM-185 No.3
2013/1/23

s
o

Fig. 5 Estimated normal maps of tlsgnthetic images: sphere (agfascala).

200xCDsStandard and agfapan-apx-400CD. We computed the
ground truth by using classic photometric stereo with specular
removal on the images captured with a linear response function.

Same as the synthetic images, we show the color coded normal
map for our proposed method, the auto-radiometric calibration
photometric stereo with no outlier removal, and the classic pho-
tometric stereo method. Our proposed method can remove the
specular regions and estimate the surface shape that similar to the
ground truth. Moreover, the shadows and holes in the bottom
part of FISH were removed correctly (figure 10). The edge of the
hole is accurately estimated compared to the result from classic
photometric stereo (f) and the auto-radiometric calibration photo-
metric stereo (d). In addition, our proposed method can estimate
the inverse response functions that are similar to the ground truth
(fig. 12). Similar to the experiments with synthetic images, the
estimated functions contain a kind of ambiguity in scale.

Table 2 shows quantitative results: the average of the angular
error of estimated normals maps compared to the ground truth,

target objects are TOMATO, and FISH. They are made of shiny and the root mean square error of the scaled estimated functions.

plastic, and ceramic with glossy paint respectively. We cap-

tured 20 images of the objects by a Point Grey's Flea cam-

Similar to the experiments with synthetic images, the angular
errors slightly decreased for our proposed method compared to

era with two nonlinear response functions, namely, agfa-scala-the auto-radiometric calibration photometric stereo without out-

(© 2013 Information Processing Society of Japan
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Fig. 6 Estimated inverse responienction. The graph is plotted using the
first ninetieth percentile of pixel intensities. (a) agfapan-apx-400CD

(b) agfa-scala-200xCDStandard.

(a)

(b)

Fig. 7 Real images: (a) TOMFO (b) FISH

Table 2 Estimation results for the real images sphere wher 0.6. Av-

erage of the angular error of estimated normal map, and the RMS

error of estimated response function.

Surface Surface Surface | Inverse

normal normal normal | response

(classic) | (auto-calib.) | (ours) function
FISH(agfapan) 17.90 3.89 2.22° 0.0063
FISH(agfascala) 6.91° 313 2.40° 0.0055
TOMATO(agfapan) 17.90 277 1.80° 0.0075
TOMATO(agfascala)| 5.56° 1.76 1.69° 0.0086
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Fig. 8 Estimated normal maps of tmeal images: TOMATO (agfapan).

lier removal. The root mean square errors show that our proposed
method can estimate the shape of the inverse response function
accurately despite the observed intensities do not cover the whole
range of intensities.

5. Conclusion and Future Work

This paper presents an extension of photometric stereo with
auto-radiometric calibration for non-Lambertian surface. We uti-
lize RANSAC to integrate the specular detection technique to the
auto-radiometric calibration framework for photometric stereo.
Our proposed method allows surface modeling, response func-
tion estimation and outlier removal to be performed at the same
time. We experimentally show that our method can detect spec-
ular region and estimate the surface orientation accurately even
though the input images are captured by a camera with nonlinear
response function.

As for the future work, an extension for the unknown light
sources situation is still remain to be addressed.
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Fig. 10 Estimated normal maps of tmeal images: FISH (agfapan).
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Fig. 11 Estimated normal maps of theal images: FISH (agfascala).
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Fig. 12 The estimated response functions T@MATO and FISH.
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