
IPSJ SIG Technical Report

Nondeterministic Pushdown Automata with Write-Only
Output Tapes and Definable Function Classes

(Preliminary Report)

Tomoyuki Yamakami

Abstract: This paper reports preliminary results obtained from a systematic study on the behaviors of multi-valued
partial CFL functions, which are computed under various constraints by one-way nondeterministic pushdown au-
tomata equipped with additional write-only output tapes. The CFL functions tend to behave quite differently from
their corresponding context-free languages. We show several containments and separations among natural classes of
CFL functions. We also analyze the computational complexity of languages having properties of selectivity, in which
strings (or words) in the languages are selected by appropriate CFL functions. A notion of many-one reducibility
introduces relativized CFL functions, which form a hierarchy of CFL function classes. To separate function classes in
this hierarchy, we further examine the roles of special oracles that compute multiple values. For a finer analysis, we
consider restricted CFL functions having at most k distinct output values and also functions having only values that k
CFL functions simultaneously output.

Keywords: pushdown automaton, oracle, many-one reduction, truth-table reduction, polynomial hierarchy, selective
set, low set, advice, regular language, context-free language

1. Much Ado about Functions
In a traditional field of formal languages and automata, we

have dealt primarily with languages, including now-basic regular
languages and context-free languages, whose words (or strings)
are described both in the means of generation by grammars and
of acceptance by automata. In most literature, languages have
been a center piece of intensive research because of their practi-
cal applications to, for instance, a parsing analysis of program-
ming languages. By providing additional output tapes, automata
can be thought as a mechanism of transforming input words to
output words, and this mechanism has paved a general way to
(multi-valued partial) functions in the study of formal languages
and automata. From a slightly different viewpoint, languages can
be naturally regarded as {0, 1}-valued (or Boolean-valued) total
functions, by assigning 1 (or TRUE) to “acceptance” and 0 (or
FALSE) to “rejection” of each input instance given to the lan-
guages. Nevertheless, when outcomes of functions become more
general than just {0, 1}, those functions demand quite different
technical tools and proof arguments, compared to those for cor-
responding languages. For instance, unlike language families, a
containment between two multi-valued partial functions is cus-
tomarily replaced by a notion of refinement, rather than a standard
set inclusion.

In recent literature, a group of meaningful function classes has
been introduced to formal languages and automata theory and it
has exhibited its usefulness in an exploration of structural com-

1 Department of Information Science, University of Fukui, 3-9-1 Bunkyo,
Fukui 910-8507, Japan

plexity of languages. In 2004, two one-tape linear-time function
classes 1-FLIN and 1-FLIN(partial) were introduced by Tadaki,
Yamakami, and Li [13], who proved the non-existence of length-
preserving one-way functions in 1-FLIN, where the term “par-
tial” in FL(partial) refers to partial functions). Those function
classes are based on deterministic computations and thus each
function produces at most one outcome per each input as a con-
sequence of the deterministic procedure. On the contrary, non-
deterministic computations may possibly produce numerous dis-
tinct output values (including the case of no output values), and
functions computed by such computations become, in general,
multi-valued partial functions. Four associated 1-NLIN function
classes 1-NLINMV, 1-NLINMVt, 1-NLINSV, and 1-NLINSVt

were introduced also in [13] (where MV and SV respectively
stand for “multi-valued” and “single-valued” and the subscript
“t” does for “total”).

Using a model of nondeterministic pushdown automaton (or
npda, in short) equipped with one-way read-only input tapes as
well as write-only output tapes, additional three CFL function
classes CFLMV, CFLSV, and CFLSVt were defined and dis-
cussed first in [17] and explored in [18]. Those functions are also
inherently multi-valued partial functions mapping every string to
a certain finite set of strings. It was shown in [17] that there ex-
ists a pseudorandom generator in CFLSVt that fool every lan-
guage in REG/n, which is a non-uniform version of the family
REG of regular languages, defined in [13] and later character-
ized in [16] in terms of machine-independent equivalence classes.
Another function class CFL(2)MV appeared in [18] in connec-
tion to pseudorandom generators against CFL/n, which is a non-

c⃝ 2012 Information Processing Society of Japan 1

Vol.2012-AL-142 No.4
2012/11/2

IPSJ SIG Technical Report

uniform analogue of the family CFL of context-free languages in
[15]. The behaviors of functions in those function classes seem
to look quite different from what we have known for context-free
languages. For instance, the single-valued total function class
CFLSVt can be seen as a functional extension of the language
family CFL ∩ co-CFL, rather than CFL alone [18]. In stark con-
trast with a tidy theory of NP functions (see a survey [10]), cir-
cumstances that surround CFL functions are rather in disarray
mainly because of mechanical constraints (e.g., a use of stacks,
one-way moves of tape heads, and λ-moves) that harness the be-
haviors of underlying npda’s.

What remains needed is a coherent and systematic study on
the structural behaviors of multi-valued partial functions. As a
follow-up to the early study, this paper aims at exploring funda-
mental relationships among the aforementioned function classes
and their natural extensions via various notions of reducibility.
Earlier, a limited notion of many-one reducibility among lan-
guages as well as functions was introduced in [13] using a model
of one-tape linear-time computation. Here, we adapt this notation
to accommodate our model of npda’s. The many-one reducibil-
ity helps us introduce more general function classes ΣCFL

k MV and
ΣCFL

k SV for each level k ≥ 1, where those in the first level re-
spectively coincide with CFLMV and CFLSV. We are mostly fo-
cused on containments and separations of those functions classes.
In particular, in order to discuss separations among the function
classes, it is useful to consider special oracles that compute multi-
ple values. A more general treatment of such oracles was initiated
by Fenner, Homer, Ogihara, and Selman [2]. Later, we expand
the many-one reducibility to k-truth-table reducibility, where k
is a fixed positive integer. An accompanied notion of many-one
lowness given in [13] is also extended into truth-table lowness.

Polynomial-time computable functions play a special role in a
notion of P-selective sets, which was first introduced into com-
plexity theory by Selman [8] in 1979 as an analogue of semi-
recursive sets in recursion theory. Later, this notion was extended
to NPSV-selective sets [3] and beyond. We discuss a similar no-
tion under a specific requirement that all input instances are of
the same length. To emphasize this length requirement, we coin
the term “lengthwise F -selective languages.”

This paper reports merely preliminary results on CFL func-
tions, and a full report on the same subject will appear shortly in
a different medium.

2. A Starting Point
We will briefly explain existing notions and notations that mark

a starting point of the subsequent sections.

2.1 Alphabets, Strings, and Languages
Given a finite set A, the notation ∥A ∥ expresses the number of

elements in A. Let N be the set of all natural numbers (i.e., non-
negative integers) and set N+ = N − {0}. Throughout this paper,
we use the term “ polynomial” to mean polynomials on N with
non-negative coefficients. In particular, a linear polynomial is of
the form ax + b with a, b ∈ N. The notation A − B for two sets A
and B indicates the difference {x | x ∈ A, x < B}. Given a set A,
P(A) denotes the power set of A.

An alphabet is a nonempty finite set Σ and its elements are
called symbols. A string x over Σ is a finite series of symbols
chosen from Σ and its length, denoted |x|, is the total number of
symbols in x. The empty string λ is a special string whose length
is zero. A collection of strings over Σ is called a language over
Σ. A set Σk, where k ∈ N, consists only of strings of length k. In
particular, Σ0 = {λ}. Here, we set Σ∗ =

∪
k∈N Σ

k. Given a lan-
guage A over Σ, its complement is Σ∗ − A, which is also denoted
by A as long as Σ is clear from the context. In general, for two
language families C1 and C2 over the same alphabet, let C1∧C2 =

{A∩ B | A ∈ C1, B ∈ C2}, C1 ∨C2 = {A∪ B | A ∈ C1, B ∈ C2}, and
C1 − C2 = {A − B | A ∈ C1, B ∈ C2}.

To treat a tuple of strings, we adopt a track notation [x
y] of [13].

For two symbols σ and τ, [στ] expresses a new symbol. For two
strings x = x1x2 · · · xn and y = y1y2 · · · yn of length n, [x

y] denotes
a string [x1

y1][
x2
y2] · · · [xn

yn]. Whenever |x| , |y|, we follow a conven-
tion introduced in [13]: if |x| < |y|, then [x

y] actually means [x#m

y],
where m = |y| − |x| and # is a designated new symbol. Similarly,
when |x| > |y|, the notation [x

y] expresses [x
y#m] with m = |x| − |y|.

Given a language A, the characteristic function for A, denoted
χA, is a function defined as χA(x) = 1 if x ∈ A and χA(x) = 0 oth-
erwise. We expand this notion to a k-ary characteristic function
χA

k for each number k ≥ 1. We write χA
k (x1, x2, . . . , xk) as a k-bit

string χA(x1)χA(x2) · · · χA(xk) in {0, 1}k. For convenience sake,
we also write (χA(x1), χA(x2), . . . , χA(xk)) to denote this string.

As our basic computation models, we use one-way determinis-
tic finite automata (or dfa’s, in short) with λ-moves, one-way non-
deterministic pushdown automata (or npda’s) with λ-moves, two-
way deterministic Turing machines (or DTMs), and two-way non-
deterministic Turing machines (or NTMs). For any of those ma-
chines M, we write PAT HM(x) to express a collection of all com-
putation paths produced by M on input x and we use ACCM(x)
to denote a set of all accepting computation paths of M on in-
put x. Moreover, for each length n ∈ N, let ACCM,n denote
a set

∪
x:|x|=n ACCM(x). Whenever M is clear from the context,

we often drop the subscript “M” from PAT HM(x), ACCM(x) and
ACCM,n.

Whenever we refer to a write-only tape, we always assume that
(i) initially, all cells of the tape are blank, (ii) a tape head starts
at the so-called start cell, (iii) the tape head steps forward when-
ever it write down any non-blank symbol, and (iv) the tape head
can stay still only in a blank cell. For convenience, we assume
that any cells of the output tape from the start cell to any cells
that its tape head passes during a computation must contain no
blank symbols. An output (outcome or output string) along a
computation path is a string produced on the output tape after the
computation path is terminated. We call an output string valid (or
legitimate) if it is produced along a certain accepting computation
path. When we refer to the machine’s outputs, we normally disre-
gard any strings left on the output tape on a rejecting computation
path.

The notations REG and CFL stand for the families of all reg-
ular languages and of all context-free languages, respectively.
For each number k ∈ N+, the k-conjunctive closure of CFL, de-
noted CFL(k), is defined recursively as follows: CFL(1) = CFL
and CFL(k + 1) = CFL(k) ∧ CFL. See, e.g., [17]. An ad-

c⃝ 2012 Information Processing Society of Japan 2

Vol.2012-AL-142 No.4
2012/11/2

IPSJ SIG Technical Report

vised language family REG/n consists of languages L such that
there exist an advice alphabet Γ, a length-preserving (total) ad-
vice function h : N → Γ∗, and a language A ∈ REG satisfy-
ing L = {x | [x

h(|x|)] ∈ A} [13], where h is length preserving if
|h(n)| = n for all numbers n ∈ N. By replacing REG with CFL
or CFL(2), we can define CFL/n [15] and CFL(2)/n [18], respec-
tively. It is known that CFL * REG/n [13], co-CFL * CFL/n
[15], and CFL(2) * CFL/n [18]. The Boolean hierarchy over
CFL was introduced in [19] by setting CFL1 = CFL, CFL2k =

CFL2k−1 ∧ co-CFL, and CFL2k+1 = CFL2k ∨ CFL.
Moreover, let P (resp., NP) be composed of all languages rec-

ognized by DTMs (resp., NTMs) in polynomial time. Given
each index k ∈ N, we define ΣP

0 = Π
P
0 = P, ΣP

k+1 = NPΣ
P
k , and

ΠP
k+1 = co-ΣP

k+1, where NPC =
∪

A∈C NPA and NPA is the family
of languages recognized by polynomial-time NTMs with adap-
tive queries to A as an oracle. Those language families constitute
the so-called polynomial(-time) hierarchy [6]. Let PH =

∪
k∈N Σ

P
k .

We denote by L a family of languages recognized by DTMs with
a two-way read-only input tape and a two-way read/write work
tape using O(log n) cells of the work tape.

Let SAC1 be a class of languages whose characteristic func-
tions are computed by logarithmic-space uniform families of
polynomial-size Boolean circuits of O(log n) depth and semi-
bounded fan-in (that is, having AND gates of bounded fan-in and
OR gates of unbounded fan-in), provided that the negations ap-
pear only at the input level.

2.2 Functions and Refinement
We will discuss terminology associated with multi-valued par-

tial functions. Throughout this paper, we will adopt the follow-
ing convention: the generic term “function” refers to “multi-
valued partial function,” provided that single-valued functions
are viewed as a special case of multi-valued functions and par-
tial functions include total functions. We are mostly interested
in multi-valued partial functions mapping∗ Σ∗ to P(Γ∗) for cer-
tain alphabets Σ and Γ. When f is single-valued, we often write
f (x) = y instead of y ∈ f (x). Associated with f , dom(f) denotes
the domain of f defined as dom(f) = {x ∈ Σ∗ | f (x) , Ø}. If
x < dom(x), f (x) is said to be undefined.

Concerning all function classes discussed in this paper, it is
natural to concentrate only on functions whose outcomes are
bounded in size by fixed polynomials. More precisely, a multi-
valued partial function f : Σ∗ → P(Γ∗) is called polynomially
bounded (resp., linearly bounded) if there exists a nonnegative
polynomial p (resp., two positive constants c, d) such that, for any
two strings x ∈ Σ∗ and y ∈ Γ∗, if y ∈ f (x) then |y| ≤ p(|x|) (resp.,
|y| ≤ c|x|+ d) holds. In this paper, we understand that all function
classes are made of polynomially-bounded functions. Given two
alphabets Σ and Γ, a multi-valued partial function f : Σ∗ → P(Γ∗)
is called length preserving if, for any two strings x ∈ Σ∗ and y ∈ Γ,
y ∈ f (x) implies |x| = |y|.

A function class CFLMV is composed of all multi-valued par-

∗ To describe a multi-valued function f , the expression “ f : Σ∗ → Γ∗”
is customarily used in the literature. However, the current expression
“ f : Σ∗ → P(Γ∗)” matches a fact that the outcome of f on each input
string in Σ∗ is a subset of Γ∗.

tial functions f , each of which maps Σ∗ to Σ∗ for a certain alphabet
Σ and there exists an npda N with a one-way read-only input tape
and a write-only output tape such that, for every input x ∈ Σ∗,
f (x) is the set of all valid outcomes of N on the input x. Another
class CFLSV is a subclass of CFLMV consisting of single-valued
partial functions. In addition, CFLMVt and CFLSVt are respec-
tively restrictions of CFLMV and CFLSV onto total functions.
Those function classes were introduced in [17]. It was shown
in [18] that CFL ∩ co-CFL = {A | χA ∈ CFLSVt}. A func-
tion class CFL(2)MV contains all multi-valued partial functions
f such that there are two functions g1, g2 ∈ CFLMV satisfying
f (x) = g1(x) ∩ g2(x) for any string x [18].

An important concept of this paper is refinement. Given two
multi-valued partial functions f and g, we say that f is a refine-
ment of g, denoted g ⊑re f f , if (1) dom(f) = dom(g) and (2) for
every input x, f (x) ⊆ g(x) (as a set inclusion). For two sets F and
G of functions, G ⊑re f F if, for every function g ∈ G, there exists
a function f ∈ F such that g ⊑re f f . When f is additionally
single-valued, we often call f a single-valued refinement of g.

Like CFL/n, an advised function class CFLMV/n is composed
of all functions f such that there exist an advice alphabet Γ, a
length-preserving (total) advice function h : N→ Γ∗, and a func-
tion g ∈ CFLMV satisfying f (x) = g([x

h(|x|)]) for every input x
[17]. Note that CFL/n ∩ co-CFL/n = {A | χA ∈ CFLMV/n} [18].
Similarly, CFL(2)MV/n is defined in [18] using CFL(2)MV in
place of CFLMV.

The notation FL denotes a collection of polynomially-bounded
single-valued total functions computed by two-way DTMs with
a read-only input tape, a read/write work tape, and a write-only
output tape using O(log n) work space. If we allow DTMs to en-
ter rejecting states, in which any output value is automatically
invalidated, those DTMs can naturally compute partial functions.
In this way, we can obtain FL(partial) from FL by permitting un-
derlying DTMs to compute partial functions. For the precise def-
initions of a one-tape linear-time deterministic complexity class
1-DLIN and its functional versions 1-FLIN and 1-FLIN(partial),
refer to [13].

3. Many-One and Truth-Table Reductions
A notion of many-one relativization of language families as

well as counting function classes was introduced into one-tape
linear-time computations in [13]. In a similar fashion, we will
define a language family CFLA

m for a given language A over an
alphabet Γ, where the language A is customarily called an ora-
cle. A language L over an alphabet Σ belongs to CFLA

m if there
exists an npda M with a write-only output tape using an input
alphabet Σ and an output alphabet Γ such that, for every input
x ∈ Σ∗, (1) along each computation path p ∈ ACCM(x), M pro-
duces a valid output string yp ∈ Γ∗ and (2) x ∈ L iff yp ∈ A
for an appropriate computation path p ∈ ACCM(x). This M is
often called a reduction machine. For a language family C, let
CFLCm =

∪
A∈C CFLA

m. Given a language A, a language L is in
LA

m if there exists a logarithmic-space DTM M with a write-only
query tape such that, x ∈ L iff M(x) produces a string y for which
y ∈ A.

As a non-uniform extension of CFLA
m, we define CFLA

m/n; that

c⃝ 2012 Information Processing Society of Japan 3

Vol.2012-AL-142 No.4
2012/11/2

IPSJ SIG Technical Report

is, L ∈ CFLA
m/n iff there exist a length-preserving advice function

h and an npda M with a write-only output tape such that, for every
input x, (i) M([x

h(|x|)]) produces yp along every accepting path p
and (ii) x ∈ L iff yp ∈ A for an appropriate path p ∈ ACCM([x

h(|x|)]).

Lemma 3.1 For every index k ≥ 1, CFL(k + 1) ⊆ CFLCFL(k)
m .

Proof. Let L ∈ CFL(k + 1). Take two languages L1 ∈ CFL
and L2 ∈ CFL(k) such that L = L1 ∩ L2. There exists an npda M1

that recognizes L1. Without loss of generality, we assume that M1

enters a final state (either an accepting state or a rejecting state)
when it scans the right endmarker $. Now, we define a new npda
N with a write-only output tape as follows. On input x, N start
simulating M1(x). While reading each symbol of x, N copies it
down to the output tape. When M1 halts in a final state, N enters
the same inner state. Now, we take L2 as an oracle. It holds that,
for any input x, x ∈ L iff N(x) outputs x in an accepting state and
x ∈ L2. This implies that L belongs to CFLL2

m , which is a subclass
of CFLCFL(k)

m . �

Using the many-one reductions, we define the (many-one)
CFL hierarchy {ΣCFL

k ,ΠCFL
k | k ∈ N} recursively as follows:

ΣCFL
0 = ΠCFL

0 = DCFL, ΣCFL
1 = CFL, ΠCFL

k = co-ΣCFL
k , and

ΣCFL
k+1 = CFL

ΠCFL
k

m for any k ≥ 1. Reinhardt [7] discussed a sim-
ilar hierarchy built on a special language called Lpp using non-
deterministic (as well as deterministic) finite automata with out-
put tapes (which are called transducers therein) as reduction ma-
chines. We begin with a simple containment.

Lemma 3.2 CFL2 ⊆ ΣCFL
2 .

Lemma 3.3 For ever index k ≥ 2, ΣCFL
2 * CFL/n and ΣCFL

k ⊆
ΣCFL

k+1 ⊆ DSPACE(O(n)).

Proof. For the first claim, note that co-CFL ⊆ ΣCFL
2 . Since

co-CFL * CFL/n [15], it follows that ΣCFL
2 * CFL/n and thus

CFL , ΣCFL
2 . It is not difficult to show the second claim. �

The CFL hierarchy becomes a useful tool because it is closely
related to the polynomial hierarchy {ΣP

k ,Π
P
k | k ∈ N}. Follow-

ing an argument in [7], it is rather straightforward to establish the
following connection between ΣCFL

k+1 and ΣP
k . Notice that LCFL

m is
well-known as LOGCFL (LogCFL or LOG(CFL)) in the past lit-
erature. The first equation of the following lemma was proven by
Venkateswaran [14].

Lemma 3.4 LCFL
m = SAC1 and L

ΣCFL
k+1

m = ΣP
k for every index k ≥ 1.

Since the many-one reductions are quite restrictive, we want
to expand the type of relativization from “many-one” to “k-
truth table.” A language L is in CFLA

ktt if there are a language
B ∈ REG and an npda N with k write-only output tapes be-
sides a read-only input tape such that (1) ACCN(x) , Ø for all
inputs x, (2) along a computation path p ∈ ACCN(x), on the
ith output tape, N produces a string y(i)

p ∈ Γ∗, (3) from a vec-
tor (y(1)

p , y
(2)
p , . . . , y

(k)
p) of query words, we generate a k-bit string

zp = χ
A
k (y(1)

p , y
(2)
p , . . . , y

(k)
p) ∈ {0, 1}k, and (4) x ∈ L iff [x

zp] ∈ B
for an appropriate computation path p ∈ ACCN(x). Here, the set

B is called a truth table for A. In addition, we set CFLA
btt to be∪

k∈N+ CFLA
ktt.

Lemma 3.5 For every language A and index k ≥ 1, CFLA
m ∪

CFLA
m ⊆ CFLA

ktt = CFLA
ktt.

Proof. It is clear that CFLA
m ∪ CFLA

m ⊆ CFLA
1tt. Now, we show

that CFLA
ktt ⊆ CFLA

ktt. This is done by flipping the outcome of
the last computation by dfa’s. In symmetry, CFLA

ktt ⊆ CFLA
ktt also

holds. �

When playing oracles, languages in REG have no power to in-
crease the complexity of relativized CFL.

Lemma 3.6 CFLREG
btt = CFLREG

m = CFL.

Note that 1-DLINCm was introduced in [13]. In a similar way,
we can introduce 1-DLINCktt.

Lemma 3.7 For every fixed k ∈ N+, CFLk ∪ co-CFLk ⊆
1-DLINCFL

ktt . In particular, CFL ∪ co-CFL ⊆ 1-DLINCFL
1tt .

Proof. We show the lemma by induction on k ≥ 1. As the base
case k = 1, it is clear that CFL ⊆ 1-DLINCFL

m ⊆ 1-DLINCFL
1tt . Con-

sider the induction step k > 1. Assume that k is even. Note that
CFLk = CFLk−1 ∧ co-CFL. Take L1 ∈ CFLk−1 and L2 ∈ co-CFL
and let L = L1 ∩ L2. Assume that an npda M2 computes L2. y the
induction hypothesis, L1 ∈ 1-DLINCFL

(k−1)tt. Now, let M1 be a one-
tape linear-time DTM computing L1 with A as an oracle, where
A ∈ CFL. On input x, M1 produces (k− 1)-tuple (y1, y2, . . . , yk−1)
on a query tape and it holds that B(x, χA

k−1(y1, y2, . . . , yk−1)) = 1
iff x ∈ L2. We define a new machine N as follows. We
simulate M1 and generate query words (y1, y2, . . . , yk−1) as well
as a new query word #x, where # is a fresh symbol. Define
A′ = A ∪ {#x | M2(x) = 1}, which is in CFL. We define
B′ as follows: B′(x, b1b2 · · · bk) = 1 iff B(x, b1b2 · · · bk−1) = 1
and bk = 0. Note that B′(x, χA′

k (y1, y2, . . . , yk−1, #x)) = 1 iff
B(x, χA

k−1(y1, y2, . . . , yk−1)) = 1 and x ∈ L2. �

Before closing this section, we will briefly discuss a notion of
lowness. Let C be any language family that is many-one relativiz-
able. A language A is called many-one low for C if CA

m ⊆ C holds.
We define lowmC to be the set of all languages that are low for C;
that is, lowmC = {A | CA

m ⊆ C}. Similarly, we define lowkttC as a
collection of all languages that are“k-tt low for C.”

Lemma 3.8 Let k ≥ 1. (1) lowkttCFL ⊆ lowmCFL (CFL and
(2) REG ⊆ lowkttCFL ⊆ CFL ∩ co-CFL.

Proof. (1) The last containment is shown as follows. Let A ∈
lowmCFL. This means that CFLA

m ⊆ CFL. Note that A belongs
to CFLA

m. Thus, we obtain A ∈ CFLA
m ⊆ CFL. Next, we wish to

show that CFL , lowmCFL. Assume that CFL = lowmCFL. This
implies that CFLCFL

m ⊆ CFL. Since CFL(2) ⊆ CFLCFL
m by Lemma

3.1, we immediately obtain CFL(2) = CFL. This is a contradic-
tion against the well-known result that CFL(2) , CFL. Thus, we
conclude that lowmCFL , CFL.

(2) Lemma 3.6 implies CFLREG
ktt = CFL. The first contain-

ment follows immediately. For the second containment, take

c⃝ 2012 Information Processing Society of Japan 4

Vol.2012-AL-142 No.4
2012/11/2

IPSJ SIG Technical Report

any language A ∈ lowkttCFL; that is, CFLA
ktt ⊆ CFL. Since

A, A ∈ CFLA
ktt, we then obtain A, A ∈ CFL. Thus, A is in

CFL ∩ co-CFL. �

4. Relations among Function Classes
We will discuss our theme of various classes of multi-valued

partial functions and exhibit basic relationships among those
function classes. We begin with the following simple observa-
tion on functions in CFLMV.

Lemma 4.1 If f is in CFLMV, then dom(f) belongs to CFL.

Let us consider an npda M with a write-only output tape. Since
the tape heads of M may stay still at any moments (by making
λ-moves) on both input and output tapes, it seems difficult to syn-
chronize the moves of those two heads so that we can split the
output tape into two tracks and produce a string [x

y] from input
string x and output string y of M. The best we can do is to insert
a fresh symbol, say, ♮ between input symbols as well as output
symbols to adjust the speeds of two heads, as shown in the next
lemma.

Lemma 4.2 For any function f ∈ CFLMV, there exists a lan-
guage A ∈ CFL such that, for every pair x and y, y ∈ f (x) iff
[x̃
ỹ] ∈ A for certain strings x̃ and ỹ, from which x and y can be

obtained simply by removing the symbol ♮.

Let us recall the notion of refinement (⊑re f), which is often
more suitable to use than set containment (⊆) is. Hereafter, we
will consider containment relations among function classes. First,
we are focused on the number of distinct output strings of func-
tions in ΣCFL

k MV with k ≥ 1. Given a fixed number e ∈ N+, we
introduce a new function class ΣCFL

k eV as a subclass of ΣCFL
k MV

whose elements f satisfy that ∥ f (x)∥≤ e for every input x.

Lemma 4.3 Let k ≥ 1. If ΣCFL
k 2V ⊑re f Σ

CFL
k SV, then the follow-

ing condition holds: for every two languages A, B ∈ ΣCFL
k , there

are two languages A′, B′ ∈ ΣCFL
k satisfying that (i) A′ ⊆ A and

B′ ⊆ B, (ii) A′ ∩ B′ = Ø, and (iii) A ∪ B = A′ ∪ B′.

Proof. We will show the case of k = 1. Assume that
CFL2V ⊑re f CFLSV. Let A and B be any two languages in CFL.
Let Γ = {a, b} and define f (x) = {a | x ∈ A} ∪ {b | x ∈ B}. Clearly,
f belongs to CFL2V. Now, we choose a function g ∈ CFLSV
that is a refinement of f . We define A′ = {x | g(x) = {a}} and
B′ = {x | g(x) = {b}}. It is easy to show that A′ and B′ are both
context-free. By the choice of g, it holds that A′ ⊆ A, B′ ⊆ B,
A′ ∪ B′ = A ∪ B, and A′ ∩ B′ = Ø. �

Next, we turn our attention to a function class CFL(k)MV
composed of functions f of the form f (x) =

∩k
i=1 gi(x) for

g1, g2, . . . , gk ∈ CFLMV. Similarly, CFL(k)SV can be defined
using CFLSV instead of CFLMV. The class separation stated
below follows indirectly from a result in [5].

Proposition 4.4 For any number k ≥ 1, CFL(k + 1)MV @re f

CFL(k)SV.

When k = 1, it is possible to strengthen the above proposition.

Proposition 4.5 CFL(2)MV @re f CFLSV/n.

Proof. To show the desired separation, we start with the fol-
lowing claim.

Claim 1 CFL(2)SV ⊑re f CFLSV/n implies CFL(2) ⊆ CFL/n.

To lead to a contradiction, we assume that CFL(2)MV ⊑re f

CFLSV/n. Since CFL(2)SV ⊆ CFL(2)MV, Claim 1 implies
CFL(2) ⊆ CFL/n. However, this contradicts a known fact that
CFL(2) * CFL/n [18]. Therefore, CFL(2)MV @re f CFLSV/n
must hold. �

Let us consider functional compositions. The functional com-
position f ◦ g of two multi-valued partial functions f and g is
defined as (f ◦ g)(x) =

∪
y∈g(x) f (y). For convenience, we define

CFLSV(1) = CFLSV and CFLSV(k+1) = CFLSV ◦ CFLSV(k) for
any number k ≥ 1. For instance, the function f (x) = {xx} for
any x belongs to CFLSV◦CFLSV. This fact yields the following
simple containment.

Lemma 4.6 CFL(2)SV ⊆ CFLSV(5).

Given two function classesF andG, the notationF⊖G denotes
the set { f − g | f ∈ F , g ∈ G}, where (f − g)(x) = f (x) − g(x) (set
difference) for any x. Let LENlin = { f | ∃Σ∃a, b ∈ N∀x [f (x) =
Σ≤a|x|+b]}. Although the function class LENlin ⊖ CFLMV looks
like the “complement” of CFLMV in the sense of [2], the double
“complements” of CFLMV may not be the same as CFLMV.

Lemma 4.7 CFLMV ⊆ LENlin ⊖ (LENlin ⊖ CFLMV) ⊆
CFL(2)MV.

In the previous section, we discussed a many-one relativiza-
tion CFLA

m. Here, we will extend CFLA
m to CFLMVA

m. Given a
language A over an alphabet Γ, a function f : Σ∗ → Γ∗ is in
CFLMVA

m if there exists an npda M with two write-only tapes
(one of which is a standard output tape and the other is a query
tape) such that, on any input x ∈ Σ∗, (1) along each computa-
tion path p ∈ ACCM(x), M produces a query string yp on the
query tape and also an output string zp on the output tape and
(2) f (x) equals the set {zp | yp ∈ A, p ∈ ACCM(x)}. It is
obvious that CFLMV ⊆ CFLMVΣ

∗
m for any alphabet Σ and, in

particular, CFLMVØ
m = { f | ∀x [f (x) = Ø]}. Similarly, we

can define another relativized function class CFLSVA
m. Given

a language family C, we set CFLMVCm =
∪

A∈C CFLMVA
m and

CFLSVCm =
∪

A∈C CFLSVA
m.

The next lemma is compared with Lemma 4.6.

Lemma 4.8 CFLSVCFL
m ⊆ CFLSV(4).

In Section 3, we have defined {ΣCFL
k ,ΠCFL

k | k ∈ N}.
Analogously, we define ΣCFL

1 MV = CFLMV and ΣCFL
k MV =

CFLMV
ΠCFL

k
m for each k ≥ 2. In a similar way, we can define

ΣCFL
k SV. We will consider the refinement of multi-valued func-

tions by single-valued ones.

c⃝ 2012 Information Processing Society of Japan 5

Vol.2012-AL-142 No.4
2012/11/2

IPSJ SIG Technical Report

Lemma 4.9 For every index k ≥ 1, ΣCFL
k MV ⊑re f Σ

CFL
k+1 SV.

Proof. For readability, we will show the lemma only for
k = 1. Take an arbitrary function f ∈ CFLMV and its under-
lying npda M with a write-only output tape. We define a new
npda N equipped with two write-only tapes, as described before.
On input x, N tries to simulate M(x). Let p be any computation
path in PAT HM(x). While following this path p, N writes down
a query string [x

p] on N’s query tape and also an outcome of M(x)
along p on N’s output tape. For a technical reason, we need to ad-
just the length of x by inserting extra new symbols “λ,” indicating
a λ-move.

We define another npda N′ as follows. On input [x
p], N′ guesses

a computation path q of M(x), simulates M(x) along this compu-
tation path q. While this simulation step, if N′ discovers that
q ≥ p (in a fixed lexicographic order on PAT HM(x)), then N′

immediately rejects the input. Otherwise, N′ reaches the same
final state as M does. Note that N′ accepts [x

p] iff there exists
a computation path q such that q < p and M accepts x along q.
Now, let A = L(N′). Since N′ uses no output tape, A clearly be-
longs to CFL. Let y0 be the outcome of an accepting computation
path, say, p0 that is the smallest in a lexicographic order among
PAT HM(x). It is not difficult to show that y0 ∈ f (x) iff there ex-
ists an accepting computation path p such that [x

p] < A and N
outputs y0 along p. Define g to be a function that is computed by
N using A as an oracle. This implies that g ∈ CFLSVA

m, which
yields g ∈ CFLSVco-CFL

m . Moreover, g is single-valued. It also
holds that y0 ∈ f (x) iff y0 ∈ g(x). �

We want to show a separation ΣCFL
k MV @re f Σ

CFL
k SV, where

k ≥ 2, under the assumption that the polynomial hierarchy does
not collapse down to the kth level.

Theorem 4.10 For any number k ≥ 2, if PH , ΣP
k , then

ΣCFL
k MV @re f Σ

CFL
k SV.

Since the proof of the above theorem requires a discussion on
oracles that compute multi-valued partial functions, we postpone
the proof until Section 5. Later in Section 6, we will demon-
strate that CFLMV @re f CFLSV; meanwhile, we prove a slightly
weaker separation by employing a proof that is similar in essence
to the proof of Proposition 4.5.

Proposition 4.11 ΣCFL
2 MV @re f CFLSV/n.

Proof. Toward a contradiction, we assume that ΣCFL
2 MV ⊑re f

CFLSV/n. First, we claim the following.

Claim 2 If ΣCFL
2 SV ⊑re f CFLSV/n, then co-CFL ⊆ CFL/n.

Since ΣCFL
2 MV ⊑re f CFLSV/n, the above claim implies

that co-CFL ⊆ CFL/n. However, this contradicts the re-
sult co-CFL * CFL/n [15]. Therefore, we conclude that
ΣCFL

2 MV @re f CFLSV/n. The second assertion of the lemma
follows from the first assertion. �

Finally, we will discuss the many-one lowness of CFLMV
and CFLSV. Given a function class F that is many-one rela-

tivizable (i.e., F A
m is defined for every set A), lowmF denotes

the set of all languages A satisfying the containment F A
m ⊆

F [13]. It was proven in [13] that, for instance, REG =

lowm1-#LIN = lowm1-GapLIN, where 1-#LIN and 1-GapLIN are
one-tape linear-time analogues of #P and GapP, respectively.

Proposition 4.12 REG ⊆ lowmCFLSV ⊆ lowmCFLkV ⊆
lowmCFLMV (CFL for any k ≥ 1.

Proof. Note that CFLSVREG
m = CFLSV by Lemma 3.6. Hence,

the first containment follows. The second and the third contain-
ments are trivial. Next, we will focus on the last containment. Let
A ∈ lowmCFLMV. Let us define gA(x) = {1 | x ∈ A} for every
string x. This function gA belongs to CFLSVA

m. By the choice of
A, it follows that gA ∈ CFLSVA

m ⊆ CFLMVA
m ⊆ CFLMV. Since

gA is single valued, gA must be in CFLSV. Thus, we conclude
that A is in CFL.

If lowmCFLMV = CFLMV, then we obtain CFLMVCFL
m =

CFLMV, which implies CFL(2)MV = CFLMV. However, this
contradicts Proposition 4.5. Therefore, lowmCFLMV , CFLMV
follows. �

5. Oracles That Compute Multiple Values
Up to now, we have treated oracles in various reductions as sets

(or equivalently, languages), which are also seen as single-valued
total functions whose output values are limited to {0, 1}. Here, we
want to expand those oracles to multi-valued partial functions.
Earlier, Fenner, Homer, Ogihara, and Selman [2] proposed a co-
herent treatment of multi-valued partial functions within a spe-
cial framework of relativization with oracles that compute multi-
ple values. In this section, we will adopt their definitions (with
appropriate modifications) and discuss relations among function
classes that have appeared in the previous sections. However,
we will limit our attention only on logarithmic-space many-one
reductions between two multi-valued partial functions. To distin-
guish this reducibility from the reducibilities in the previous sec-
tions, we will intentionally use a slightly different notation. Given
a multi-valued partial function g, we define a function class FLgm∗
as follows. A multi-valued partial function f is in FLgm∗ if there
exists a function h1 ∈ FL and another function h2 ∈ FL(partial)
that satisfy the following condition: for any single-valued partial
refinement g̃ of g, a single-valued partial function f̃g̃ defined as
f̃g̃(x) = h2(x, g̃(h1(x))) for any input x satisfies that (i) f ⊑re f f̃g̃
and (ii) f (x) ⊆ ∪g̃∈R(g) f̃g̃(x) for all x’s, where R(g) contains all
single-valued partial refinements of g, provided that, whenever
g̃(h1(x)) is undefined, h2(x, g̃(h1(x))) is always thought to be un-
defined. Condition (ii) in the above definition intuitively ensures
that f (x) does not contain any values that cannot be produced by
any triplet (h1, h2, g̃). With this condition, our framework differs
from that of [2]. For a function class F , we set FLFm∗ to be the
union

∪
g∈F FLgm∗.

Lemma 5.1 (1) For any multi-valued partial functions f and
g, if f ⊑re f g, then FL f

m∗ ⊑re f FLgm∗.
(2) For any function classes F and G, if F ⊑re f G, then

FLFm∗ ⊑re f FLGm∗.

c⃝ 2012 Information Processing Society of Japan 6

Vol.2012-AL-142 No.4
2012/11/2

IPSJ SIG Technical Report

Proof. (1) Let h ∈ FL f
m∗ and take two functions h1 ∈ FL

and h2 ∈ FL(partial) such that f ⊑re f f̃ , h ⊑re f h̃ f̃ , and
h̃ f̃ (x) = h2(x, f̃ (h1(x))) for any single-valued partial refinement
f̃ of f . Let g̃ be any single-valued refinement of g. From f ⊑re f g

follows f ⊑re f g̃. This entails that h̃ f̃ ⊑re f h̃g̃; thus, h ⊑re f h̃g̃
holds. Let us define r(x) =

∪
g̃∈R(g) h̃g̃(x) for every x. This im-

plies r ∈ FLgm∗. Moreover, since h ⊑re f h̃g̃ for any single-valued
partial refinement g̃ of g, we obtain h ⊑re f r. As a consequence,
FL f

m∗ ⊑re f FLgm∗. (2) This follows from (1). �

In accordance with the set oracles discussed in the previous
sections, when g coincides with the characteristic function χA for
a certain language A, we succinctly write FLA

m∗ instead of FLχA
m∗.

Given a language family C, FLCm∗ denotes
∪

A∈C FLA
m∗.

Lemma 5.2 FLCFL
m∗ ⊆ FLCFLSV

m∗ .

Proof. Let h ∈ FLA
m∗ for a certain language A ∈ CFL. Note that,

for any partial function g, χA ⊑re f g implies g = χA. There exist
functions h1 ∈ FL and h2 ∈ FL(partial) such that the function
h̃A defined as h̃A(x) = h2(x, χA(h1(x))) for every string x satisfies
that h ⊑re f h̃A and h(x) ⊆ h̃A(x). This yields h ∈ FLχA

m∗. Since
χA ∈ CFLSVt, it follows that h ∈ FLχA

m∗ ⊆ FLCFLSV
m∗ . �

In Section 3, we have left Theorem 4.10 unproven. In what
follows, we want to give the proof of Theorem 4.10. To prove
this theorem, we first introduce two function classes ΣP

k MV and
ΣP

k SV in a way similar to ΣP
k using NPMV and NPSV in place of

NP; that is, ΣP
k MV = NPMVΣ

P
k−1 and ΣP

k SV = NPSVΣ
P
k−1 for every

index k ≥ 1. The following relations similar to Lemma 3.4 hold.

Proposition 5.3 FL
ΣCFL

k+1 MV
m∗ = ΣP

k MV and FL
ΣCFL

k+1 SV
m∗ = ΣP

k SV for
any index k ≥ 1.

Lemma 5.4 Let k ≥ 1.
(1) ΣCFL

k+1 MV ⊑re f Σ
CFL
k+1 SV implies ΣP

k MV ⊑re f Σ
P
k SV.

(2) ΣP
k MV ⊑re f Σ

P
k SV implies PH = ΣP

k+1.

Proof. (1) Assume that ΣCFL
k+1 MV ⊑re f Σ

CFL
k+1 SV. Lemma 5.1

implies that FL
ΣCFL

k+1 MV
m∗ ⊑re f FL

ΣCFL
k+1 SV

m∗ . By Proposition 5.3, the
conclusion ΣP

k MV ⊑re f Σ
P
k SV immediately follows.

(2) When k = 1, the claim was already proven in [4] using an
analysis of NPSV-selective sets. The case of k > 1 can be treated
in essence in a way similar to the first case. �

Now, we are ready to give its proof of Theorem 4.10 with a
help of Lemma 5.4.

Proof of Theorem 4.10. Let k ≥ 1. We want to show contra-
positive of the theorem. Assume that ΣCFL

k+1 MV ⊑re f Σ
CFL
k+1 SV. By

Lemma 5.4(1), we conclude that ΣP
k MV ⊑re f Σ

P
k SV. This result

implies PH = ΣP
k+1 by Lemma 5.4(2). �

6. Lengthwise Selective Languages
To accommodate specifications of npda’s, we slightly modify

the notion ofF -selectivity by demanding that two arbitrary inputs
to a selector must have the same length to obtain its meaningful

outcomes. Because of this length requirement for the selector, we
prefer to use a new term “lengthwise F -selective.”

To treat input instances to a 2-ary partial function f on a model
of one-way machine M, we need to take a slightly unconven-
tional approach. When a pair (x, y) of strings is given as an input
instance to the machine M, we split the input tape into two tracks
and place x in the upper track and y in the lower track as [x

y] so
that the tape head can read x and y simultaneously from the left
to the right of them. More formally, if we wish to compute f
on input (x, y), we start its underlying machine M with its input
tape that contains the string of the form [x

y]. From this formalism,
we might have written f ([x

y]) to describe the function f taking
an input of the form [x

y]; however, we prefer to follow a standard
notation of f (x, y) throughout this paper.

Given a function class F , a language A is said to be lengthwise
F -selective if there exists a 2-ary function f : Σ∗ × Σ∗ → P(Σ∗)
(called a selector) in F such that, for every two strings x, y ∈ Σ∗,
(i) f (x, y) ⊆ {x, y} and (ii) if {x, y} ∩ A , Ø and |x| = |y|, then
f (x, y) , Ø and f (x, y) ⊆ A. Note that, whenever |x| , |y|, we
may assume that f (x, y) = Ø. We write F -SELlw for the collec-
tion of all lengthwise F -selective languages.

Lemma 6.1 Let k ≥ 1. For every language A ∈ ΣCFL
k SVt-SELlw,

there always exists a ΣCFL
k SVt-selector f for A such that f (x, y) =

f (y, x) holds for any pair (x, y). This claim also holds for
ΣCFL

k SV-SELlw and ΣCFL
k MV-SELlw.

Proof. We will show only the case of k = 1. Take any
CFLSVt-selector f for A. Let M be an npda with a write-
only output tape computing f . Now, we define g as g(x, y) =
f (min{x, y},max{x, y}), provided that we have a lexicographic or-
der on Σn for every n. Obviously, g is also a selector for A and
also satisfies g(x, y) = g(y, x) for every pair (x, y). Next, we ar-
gue that g is indeed in CFLSVt. Consider the npda N defined as
follows. On input [x

y] with |x| = |y|, N guesses one of the three
possibilities: x < y, y < x, and x = y. If either “x < y” or “x = y”
is guessed, then N simulates M([x

y]). If “y < x” is guessed, then
N simulates M([yx]) by exchanging the roles of x and y. During
reading the entire input, N checks if the guess at the first step is
actually correct by comparing x and y symbol by symbol. When-
ever N discovers that the guess is wrong, it enters a rejecting state
immediately. Now, assume that the guess is correct. In this case,
N correctly simulates M, and thus N computes g. Clearly, g be-
longs to CFLSVt. �

An obvious upper bound of the computational complexity of
CFLSV-SELlw is given in the following lemma. Its proof is sim-
ilar in essence to that of NPSV-SEL ⊆ NP/poly [4]. A language
family 1-NTIME(t) consists of languages recognized by one-tape
NTMs within time t(n), where n is the length of inputs.

Lemma 6.2 CFLSV-SELlw ⊆ 1-NTIME(O(n2))/O(n2).

Let us consider a relation between ΣCFL
k and ΣCFL

k SV-SELlw.

Proposition 6.3 For each level k ≥ 2, ΣCFL
k MV ⊑re f Σ

CFL
k SV

implies ΣCFL
k ⊆ ΣCFL

k SV-SELlw.

c⃝ 2012 Information Processing Society of Japan 7

Vol.2012-AL-142 No.4
2012/11/2

IPSJ SIG Technical Report

This proposition follows immediately from two lemmas, Lem-
mas 6.4 and 6.5. We start with the first lemma regarding a relation
between ΣCFL

k and ΣCFL
k 2V-SELlw

Lemma 6.4 For every index k ≥ 1, ΣCFL
k ⊆ ΣCFL

k 2V-SELlw.

Proof. For readability, we will show the case of k = 1. For
each language A ∈ CFL, take an npda M that recognize A. To
show that A ∈ CFL2V-SELlw, it suffices to construct a selector
for A using an appropriate npda with a write-only output tape.
Let (x, y) be an input pair with |x| = |y|. Assume that [x

y] is given
to an input tape. In what follows, we will describe an npda N
equipped with a write-only output tape. On the input [x

y], N non-
deterministically choose x or y and run M on the chosen input
string. Consider the case where N has guessed x. While reading
x, N copies it onto the output tape. When M halts in either an
accepting state or a rejecting state, N enters the same inner state.
Let f (x, y) be the outcome of N on the input [x

y]. It is obvious that
f is a multi-valued partial function. Since f (x, y) ⊆ {x, y} for any
pair (x, y), f belongs to CFL2V. Moreover, it is easy to show that
f (x, y) ⊆ A when {x, y} ∩ A , Ø. Thus, A ∈ CFL2V-SELlw. �

The second lemma links function classes and lengthwise selec-
tive sets.

Lemma 6.5 For each index k ≥ 1, if ΣCFL
k 2V ⊑re f Σ

CFL
k SV, then

ΣCFL
k 2V-SELlw ⊆ ΣCFL

k SV-SELlw.

Proof. Only the case of k = 1 will be shown here. As-
sume that CFL2V ⊑re f CFLSV. Let us take any language
A ∈ CFL2V-SELlw and consider a CFL2V-selector for A. Since
f ∈ CFL2V, we choose its refinement g ∈ CFLSV, for which
f (x, y) , Ø implies g(x, y) , Ø and g(x, y) ⊆ f (x, y), and
f (x, y) = Ø implies g(x, y) = Ø. Moreover, since f is a se-
lector for A, if {x, y} ∩ A , Ø, then it follows that f (x, y) ⊆ A
and f (x, y) , Ø. By combining those relations, it holds that, if
{x, y} ∩ A , Ø, then g(x, y) ⊆ f (x, y) ⊆ A and g(x, y) , Ø. Hence,
g is also a selector for A. �

As a main result of this section, we will show a separation be-
tween CFL and CFLSV-SELlw. This separation is obtained by ex-
ploiting a so-called swapping property of npda’s (see [15], [18]).

Theorem 6.6 CFL * CFLSV-SELlw.

By Proposition 6.3, Theorem 6.6 yields the following corollary.

Corollary 6.7 CFLMV @re f CFLSV.

Finally, we will show a power of CFLSVt-SELlw against ad-
vised language families.

Proposition 6.8 CFLSVt-SELlw * REG/n.

Proof. In [17] appeared a special language IP∗ = {ax | a ∈
{λ, 0, 1}, x = x1x2, |x1| = |x2|, x1 ⊙ xR

2 = 1 (mod 2)}, where
x ⊙ y denotes the (binary) inner product of x and y. It was
shown in [17] that IP∗ is REG/n-pseudorandom and therefore
it is not in REG/n. The remaining task is to show that IP∗ be-
longs to CFLSV-SELlw. Let (x, y) be any pair of strings with

|x| = |y|. On the input [x
y], we first guess either x or y and start

copying the chosen string on the output tape. Let x = x1x2 and
y = y1y2. We simultaneously guess a boundary between [x1

y1] and
[x2
y2] and store [x1

y1] into the stack. While reading [x2
y2], we com-

pute ℓx = x1 ⊙ xR
2 (mod 2) and ℓy = y1 ⊙ yR

2 (mod 2) using
the stack content of [x1

y1]. If |x1| , |x2| is detected, we immedi-
ately enter a rejecting state. Assume otherwise. In the case where
ℓx = ℓy, if we have guessed x, then we enter an accepting state;
otherwise, we enter a rejecting state. In the case where ℓx < ℓy
(resp., ℓy < ℓx), if we have guessed x, then we enter a rejecting
state (resp., an accepting state); otherwise, we enter an accepting
state (resp., a rejecting state). It is clear that we always output a
single value, and thus the function f computed by this algorithm
belongs to CFLSVt. Moreover, f (x, y) ⊆ A holds if either x ∈ A
or y ∈ A. Therefore, A is in CFLSVt-SELlw. �

References
[1] Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of sim-

ple phrase-structure grammars. Z. Phonetik Sprachwiss. Kommunik.,
14, 143–172, 1961.

[2] S. Fenner, S. Homer, M. Ogihara, and A. Selman. On using oracles
that compute values. In Proc. of the 10th Symp. on Theoretical Aspects
of Computer Science, Lecture Notes in Computer Science, Springer,
vol.665, pp.398–407, 1993.

[3] L. A. Hemachandra, A. Hoene, M. Ogiwara, A. L. Selman, T. Thier-
auf, and J. Wang. Selectivity. In Proc. of the 5th International Confer-
ence on Computing and Information, pp55–59, 1993.

[4] L. A. Hemaspaandra, A. V. Naik, M. Ogihara, and A. L. Selman. Com-
puting solutions uniquely collaspses the polynomial hierarchy. SIAM
J. Comput., 25 (1996) 697–708.

[5] L. Y. Liu and P. Weiner. An infinite hierarchy of intersections of
context-free languages. Math. Systems Theory, 7 (1973) 185–192.

[6] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for reg-
ular expressions with squaring requires exponential space. In Proc. of
the 13th Annual IEEE Symposium on Switching and Automata Theory,
pp.125–129, 1972.

[7] K. Reinhardt. Hierarchies over the context-free languages. In Proc. of
the 6th International Meeting of Young Computer Scientists on As-
pects and Prospects of Theoretical Computer Science (IMYCS), Lec-
ture Notes in Computer Science, Springer, vol.464, pp.214–224, 1990.

[8] A. L. Selman. P-selective sets, tally languages, and the behavior
of polynomial time reducibilities on NP. Math. Systems Theory, 13
(1979) 55–65.

[9] A. L. Selman. A taxonomy of complexity classes of functions. J. Com-
put. System Sci., 48 (1994) 357–381.

[10] A. L. Selman. Much ado about functions. In Proc. of the 11th Annual
IEEE Conference on Computational Complexity, pp.198–212, 1996.

[11] L. J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci.,
3 (1976) 1–22.

[12] I. H. Sudborough. On the tape complexity of deterministic context-
free languages. J. ACM, 25 (1978) 405–414.

[13] K. Tadaki, T. Yamakami, and J. C. H. Lin. Theory of one-tape linear-
time Turing machines. Theor. Comput. Sci., 411 (2010) 22–43. An ex-
tended abstract appeared in the Proc. of the 30th SOFSEM Conference
on Current Trends in Theory and Practice of Computer Science (SOF-
SEM 2004), Lecture Notes in Computer Science, Springer, vol.2932,
pp.335–348, 2004.

[14] H. Venkateswaran. Properties that characterize LOGCFL. J. Comput.
System Sci., 42 (1991) 380–404.

[15] T. Yamakami. Swapping lemmas for regular and context-free lan-
guages. Available at arXiv:0808.4122, 2008.

[16] T. Yamakami. The roles of advice to one-tape linear-time Turing ma-
chines and finite automata. Int. J. Found. Comput. Sci., 21 (2010) 941–
962. An early version appeared in the Proc. of the 20th International
Symposium on Algorithms and Computation (ISAAC 2009), Lecture
Notes in Computer Science, Springer, vol.5878, pp.933–942, 2009.

[17] T. Yamakami. Immunity and pseudorandomness of context-free lan-
guages. Theor. Comput. Sci., 412 (2011) 6432–6450.

[18] T. Yamakami. Pseudorandom generators against advised context-free
languages. Available at arXiv:0902.2774, 2009.

[19] T. Yamakami and Y. Kato. The dissecting power of regular languages.
Available at arXiv:1202.4883, 2012.

c⃝ 2012 Information Processing Society of Japan 8

Vol.2012-AL-142 No.4
2012/11/2

