IPSJ SIG Technical Report

Vol.2012-1S-121 No.3
2012/9/10

Retrieving Similar Source Codes by Control Structure Metrics

Yoshihisa Udagawa'

In this paper, we present an approach to improve source code retrieval using the structure of control statements. We develop a
lexical parser and extract structural information, which is then converted into a document vector used for information retrieval.
We show that the number of control statements largely depends on cyclomatic complexity. Next we employ a difference
measurement, which is the Euclidean distance between two vectors, to improve the vector space model used for retrieving source
codes. Finally, we conduct two types of experiments using the open source Struts 2 Core. In the first experiment, we use the
try-catch and synchronized statements as keys, and examine the quality of the code retrieved with respect to exceptions and
thread control. In the second experiment, we retrieve code on the basis of similarity and difference measurements. In both
experiments, several sets of source codes that are presumably maintained in a consistent manner are retrieved.

1. Introduction

Numerous open source programs are available [1][13][14] for
the development of Web applications for industrial use and for
educational purposes in advanced programming courses.
However, many valuable programming techniques available in
open-source programs remain unexploited. The aim of our work
is to search for excellent source codes that have a given control
structure. Specifically, we develop sophisticated techniques to
retrieve similar source codes using the structural information of
control structures, including conditional, iteration, and
exception handling statements.

Various techniques have been proposed to collect similar
source codes, especially in the field of software clone detection.
These techniques can be classified into four categories:

(A) Text-based comparison
This approach compares source codes in the same partition.
Marcus et al. [8] compare pieces of text identifiers using a latent

semantic indexing technique developed for information retrieval.

The key idea of this approach is to identify source-code
fragments using similar names or identifiers.
(B) Token comparison

In this approach, before comparison, tokens of identifiers
(data type names, variable names, etc.) are replaced by special
tokens, and then similar subsequences of tokens are identified
[6]. Because the encoding of tokens abstracts from their
concrete values, code fragments that are different only in
parameter naming can be detected. McCreight [11] and Baker
[2] show that a suffix tree of tokens can be built in linear time
and space with respect to the input length. This tree results in
fair performance when comparing large-scale source codes.
(C) Metrics comparison

This approach characterizes code fragments using different
metrics, and compares these metric vectors instead of directly
comparing the code [9]. To detect similar codes, the Euclidean
distance for these metric vectors is used. In addition, metrics
comparison techniques are proposed for detecting duplicated
Web pages [7].
(D) Structure-based comparison

11 Tokyo Polytechnic University

(©2012 Information Processing Society of Japan

This approach applies pattern matching and complex
algorithms on abstract syntax trees or dependency graphs.
Baxter et al. propose a method using abstract syntax trees for
detecting exact and near-miss program source fragments [3].
Horwitz et al. propose a method that generates a slice of an
entire program in a system dependence graph [4]. However, the
processing of structure-based comparison is computationally
more expensive. Thus these techniques do not scale to large
code bases. Jiang et al. developed an algorithm that
characterizes a sub-tree using a vector, whose elements
represent the number of occurrences of a specific tree pattern in
the sub-tree. Specifically, they propose an algorithm that
characterizes sub-trees using numerical vectors, and clusters
these vectors based on their Euclidean distances [5].

Our approach is a combination of the structure-based
comparison and metrics comparison. First, we developed a
lexical parser and extracted structures of source codes for
control statements, such as if-else, for and try-catch. Then, we
inputted the extracted structural information to the vector space
model and computed a similarity measure, which was used to
find similar methods in Java. Next, we applied our retrieval
methods to the source codes of Struts 2 Core. Struts 2 Core was
selected because it is widely used to develop Web applications
for both industrial and educational use, and its size is
appropriate for this case study.

The rest of this paper is organized as follows. In Section 2, we
present an overview of our approach. Specifically, we describe
the system we developed, the structure metrics used, and the
statistical results of the structure metrics obtained from the
Struts 2 Core source codes. In Section 3, we discuss how source
code can be retrieved using a specific control structure. In
Section 4, we discuss a similarity-retrieval approach based on a
vector space model that uses the structure metrics. Section 5
concludes the paper.

2. Overview

2.1 Complexity metrics and control structure

To characterize the different facets of software complexity,
several metrics can be used, such as file level metrics,
object-oriented metrics, and complexity metrics for program

IPSJ SIG Technical Report

modules. Cyclomatic complexity [10] is defined on the basis
of graph-theoretic properties, i.e. , "Edges - Nodes + Connected
Components,” and is widely used to estimate the difficulty
associated with testing or planning a testing strategy.
Cyclomatic complexity is approximately equal to the number of
control statements or decision points (if-then-else, for loop,
while loop, etc.) contained in a program. This metric does not
consider the function of the control statements. Thus, when
retrieving source codes with the same control structure, using
this approximation metric is considered an oversimplification.

2.2 Tools Developed

Figure 1 illustrates a high-level architecture of the tools we
developed. The structure extraction tool is implemented in
C-language and is used to extract control structures of Java
programs placed in a given directory. The structure extraction
tool extracts code structures from every method of a class in
Java. Then, these extracted structures are inputted to the statistic
tool, structure analysis tool, and retrieval tool, which are written
in VB. Finally, the outputs of these modules are fed into the
source code viewer. In our current implementation, the tools
written in VB and the source code viewer are manually
connected.

source |

codes

statistic |
tool

structure structure source
extraction > analysis -r> code
tool tool viewer

retrieval |
tool

Figure 1. High-level architecture of tools developed

2.3 Struts 2 Core and its file metrics

In general, a framework automates common tasks, and
thereby providing a user platform that simplifies web
development. The Struts 2 Core framework implements the
model-view-controller (MVC) design pattern. Table 1
summarizes the package structure of Struts 2 Core.

In the MVC design pattern, the controller receives inputs and
then maps user requests to appropriate actions. In Struts 2 Core,
the classes in the dispatcher package perform the tasks of the
controller. The model in MV C is responsible for maintaining the
data of the application or business logic. It also validates data
entered by the user. The maintained data is returned to the
controller. The action component class in the components
package mainly implements the model in MVC. When the
controller triggers the view in MVC, it presents the data in a
particular format. In Struts 2 Core the view is mostly
implemented by the classes in the freemarker, jsp, and velocity
packages.

We can estimate the volume of the source codes using file
metrics. Table 2 summarizes Typical file metrics for important
packages. Struts 2 Core consists of 46,100 lines in source code.
As for the number of lines, Struts 2 Core is a middle scale
application in industry. The number of Java files differs from the

(©2012 Information Processing Society of Japan

Vol.2012-1S-121 No.3
2012/9/10

number of declared classes because some java files include
definitions of inner classes and anonymous classes.

Table 1. Package structure of Struts 2 Core
Directory Path No. Files
struts2 5
struts2/components 57
struts2/components/template 8
struts2/config 10
struts2/dispatcher 20
struts2/dispatcher/mapper 8
struts2/dispatcher/multipart 3
struts2/dispatcher/ng/filter 4
struts2/dispatcher/ng/listener 2
struts2/dispatcher/ng/servlet 2
struts2/dispatcher/ng 5
struts2/impl 3
struts2/interceptor 27
struts2/interceptor/debugging 3
struts2/interceptor/validation 2
struts2/servlet/interceptor 1
struts2/util 29
struts2/views 3
struts2/views/annotations 3
struts2/views/freemarker 5
struts2/views/freemarker/tags 45
struts2/views/jsp 20
struts2/views/jsp/ui 34
struts2/views/jsp/iterator
struts2/views/util 3
struts2/views/velocity 3
struts2/views/velocity/components 39
struts2/views/xslt 19
Total 368
PrefixBasedActionMapper::getMapping
{
for
if
if
}
if
if
if’
for
if
else if
else if
b
else
b
}
}
¥
else if’
}
¥
}
if
}
}

Figure 2. Control structure of the maximum nesting level 7

IPSJ SIG Technical Report

2.4 Structural metrics of Struts 2 Core

We wused the structure extraction tool and extracted
approximately 12,700 lines of code of control structures. Table 3
summarizes the statistics of the extracted control structures. The
statistics indicates that the top six extracted statements are if,
else, try, catch, for, and else-if statements. Note that only two
do-while statements are used in the Struts 2 Core source codes.
Table 4 lists the top six methods in terms of cyclomatic
complexity. Cyclomatic complexity is approximately
proportional to the number of control statements. From Table 4
we see that the if statements are the main contributors of
cyclomatic complexity. In software engineering, it is
recommended to maintain cyclomatic complexity under 10.
Thus, it is suggested that complex methods are recommended to
be separated into two or more methods. The simplification of
complex methods is beyond the scope of this study and thus not
addressed here.

A maximum nesting level of 7, with cyclomatic complexity

Vol.2012-1S-121 No.3
2012/9/10

PrefixBasedActionMapper.java file in the org.apache.struts2.
dispatcher.mapper directory. Figure 2 illustrates the extracted
control structure of the getMapping method.

3. Code Retrieval Using a Specific Control
Structure

3.1 Try-catch-finally statement

For developers and students, the fastest way to learn how to
accomplish a programming task is to look at an example of a
similar implementation. During maintenance tasks, engineers
spend the majority of their time identifying code statements
related to a bug, and finding similar codes that may cause the
same bug. Code retrieval methods allow engineers to explore
source codes in a quicker and deeper manner.

13, is recorded in the getMapping method in the
Table 2. Typical file metrics for important packages
<top> | components | config | dispacher | impl | intercepter util views Total
CountJavalFile 5 65 10 44 3 33 29 179 368
CountDeclClass 5 76 13 57 3 38 36 186 414
CountDeclFunction 19 771 64 372 6 156 188 1,101 2,677
CountLine 620 12,213 1,500 8,007 210 4,904 3.162 | 15,394 46,100
CountLineBlank 120 1,726 179 974 31 522 515 2,581 6,648
CountLineCode 178 5,048 636 3,802 105 1,946 1,554 7,374 21,543
CountLineComment 323 4,546 693 3,328 74 2,440 1,095 5.455 17,954
CountStmtDecl 120 2,207 247 1,434 39 775 586 3.385 8,793
CountStmtExe 27 1,930 221 1,363 27 717 570 2212 7,067
RatioCommentToCode 1.81 0.76 1.09 0.88 0.70 1.25 0.70 0.74 0.83
RatioBlankToCode 0.67 0.29 0.28 0.26 0.30 0.27 0.33 0.35 0.31
Table 3. Statistics of the extracted control structures
Number of 1234 |5|6|7|8|9|10]11]12[13 14(15|16|17|18 34 (35|36 50| 51| Net
statements
synchronized 8 0, 0] 0] 0/ 0 0] 0f 0] 0f 0 0 0 0 0 0 0f 0 0] of 0 o 0 8
try 80| 14| 2| 0] 0O 0] 0f 0] 0of 0] 0 0] 0] 0 0] 0] 0 0 0] of 0 o 0 114
catch 61| 100 5 1 0O 0] 0of 0] 0of 0] 0 0] 0] 0 0] 0 0 0 0] of 0 o 0 100
final 26/ 3 0 0 0 0 0of 0 0o 0 O/ Of 0f 0f 0 0f 0f O 0| 0| 0 0 0 32
if 200) 74) 42) 24 11) 17) 6| 3| 4] 2| 4 1] 2| 1] 3 0 2 0~ 0| 1} 0" 0] 1] 1110
clse 94) 20 8 2| Ol O O 0f O 0f Of 0f 0| 0f 0 0 0 0 0| 0| 0 0] 0 166
else if 18| 8 &8 1) 2| 2| 1| 0O o0 0o o0 o o 0 o0 0o 0 0 0] 0 0 o 0 o1
for 72| 8 0 0 2| 0 0 0] 0 0 0 0 0 0] 0 0] 0 0 0] 0f 0 o 0 o8
while 290 1) 0] 0 0] 0 0] 0 0] 0 0 0 0 0 0 0 0f 0 0] 0f 0 o 0 31
do-while 2 0 0 0 0 0O 0 0 0 0 0 0 0 0 0 0 0 0 0] 0f 0 ol 0 2
Total 1752
Table 4. The top six methods complexity
Cyclomatic No. of Control .
No y . No. of if Package name.Class name.Method name
Complexity Statements
1 55 57 51 org.apache.struts2.components. UIBean.evaluateParams
2 41 43 35 org.apache.struts2.components. DoubleListUIBean.evaluateExtraParams
3 25 26 17 org.apache.struts2.dispatcher.mapper.Restful2 ActionMapper.getMapping
4 22 26 17 org.apache.struts2 views.velocity. VelocityManager.loadConfiguration
5 18 21 15 org.apache.struts2.views.util. DefaultUrlHelper.buildUrl
6 18 20 15 org.apache.struts2.views jsp.iterator.SubsetlteratorTag.doStartTag

(©2012 Information Processing Society of Japan

IPSJ SIG Technical Report

Vol.2012-1S-121 No.3
2012/9/10

Table 5. Methods containing one try statement and three or four catch statements

No Package Name File / Class Name Method Name Exception Handling
1 |org.apache.struts2.dispatcherng |InitOperations java initLogging S}Tstem.err printing
= = == printStackTrace()
. : . - : System.err.printin()
2 |org.apache.struts2.dispatcher DefaultStaticContentLoader java initLogging ,
printStackTrace()
.) System.etr.printlng
3 |org.apache.struts2.dispatcher FilterDispatcher.java mitl.ogging VS em.err.printin()
printStackTrace()
4 |org.apache.struts2.dispatcher Dispatcher java it CustomConfigurationProviders ConfigurationException()
5 |org.apache.struts2.impl StrutsObjectFactory java buildInterceptor ConfigurationException()

In Java, exceptional events are handled by the try, catch, and
finally statements. These statements contribute to improve the
quality of a software system. We have identified 96 methods that
contain the try statement. However, only five of these methods
contain one try statement with three or four catch statements and
no finally statements. These methods are summarized in Table 5.
The first method, InitOperations::initLogging, is shown in
Figure 3. Because each of the first three methods in Table 5
contains three catch statements having the same structure, they
should be maintained consistently. The last two methods have
similar structures and throw exceptions to the
ConfigurationException() method, but the types of exceptions
thrown are slightly different. These structures are informative
for engineers maintaining source codes, and students studying
exception handling.

3.2 Synchronized statement

Synchronized statements are only used in 11 methods. We
checked all source codes to confirm that HttpSession session is
synchronized with get, put, remove and check sessions. Figure
4 shows fragments of source codes used to obtain the attribute
of a session associated with a given key and place an attribute
with a given key (org.apache.struts2.dispatcher.SessionMap
class).

4. Code Retrieval Using Vector Space Model

4.1 Structural Metrics as Vector Components

The vector space model [12] is an algebraic model for
representing text documents as vectors of identifiers or terms.
Given a set of documents D, a document d; in D is represented
as a vector of term weights:

d}. = (Wi.j sWajaeen, Wy j)

where N is the total number of terms in document d; and w; j is
the weight of the i-th term.
A user query can be similarly converted into a vector q:

q:= (Wl.q-wlqw'rwhﬁq)
The similarity between document d; and query g can be

computed as the cosine of the angle between the two vectors d
and g in the N-dimensional space:

(©2012 Information Processing Society of Japan

public void initLogging(HostConfig filterConfig) {
String factoryName = filterConfig.getInitParameter("loggerFactory");
if (factoryName = null) {
try {
Class cls = ClassLoaderUtil.loadClass(factoryName, this.getClass());
LoggerFactory fac = (LoggerFactory) cls.newlnstance();
LoggerFactory.setlLoggerFactory(fac);
} catch (InstantiationException e) {
System.err.printin("Unable to instantiate logger factory: " +
factoryName + ", using default");
e.printStackTrace();
} catch (lllegalAccessException e) {
System.err.printin("Unable to access logger factory: " +
factoryName + ", using default");
e.printStackTrace();
} catch (ClassNotFoundException e) {
System.err.printin("Unable to locate logger factory class: " +
factoryName + ", using default");
e.printStackTrace();
}
}
}

Figure 3. Example of a method retrieved by specific
try-catch structures

public V get{(Object key) {
if (session == null) {
return null;
}
synchronized (session) {
return (V) session.getAttribute(key.toString());
1
1

public V put(K key, V value) {

synchronized (this) {

if (session == null) {
session = request.getSession(true);

h

}

synchronized (session) {
V oldValue = get(key);
entries = null;
session.setAttribute(key.toString(), value);
return oldValue;

Figure 4. Fragments of code using Synchronized statement

IPSJ SIG Technical Report

N
iz Wi j"Wig

Jzﬁlwfj'dztkwfq

Similarity(d;, q) = cos(d;, q) =

It is natural to assign structural metrics to the elements of a
document vector. For example, the getMapping method shown
in Figure 2 consists of seven if statements, one else statement,
tree else-if statements and two for statements. Thus, the
getMapping method is represented by the vector (0, 0, 0, 0, 7, 1,
3, 2, 0, 0). Each element of the vector corresponds to a
"synchronized," "try," "catch," etc. statement as shown in Table
1.

Although this idea is appealing, there is an essential defect.
For example, the similarity of vectors (0, 0,0, 0, 7, 1, 3, 2, 0, 0)
and (0, 0, 0, 0, 14, 2, 6, 4, 0, 0) is 1.0, because the two vector
have the same direction. However, source codes composed of 7
if statements are obviously different from those composed of 14
if statements. This defect is often observed in vectors that
contain only a few elements with non-zero values.

The Euclidean distance between vectors q and d is the
distance of the vector | v |= | q — d |. In general, for an
N-dimensional space, the distance is defined by the magnitude
of the vectors and is computed in component form by the
following formula:

M=lg-d|= yXii(q: —do)*

The magnitude, termed squared Euclidean distance, is
frequently used in various disciplines when the magnitude of
differences has to be compared. We use the distance as a
difference measure.

Figure 5 illustrates the concept of similarity and difference in
the context of vector algebra. Intuitively, while similarity
depends on the directions of two vectors, the difference depends
on the length of the vector resulting from the subtraction of the
two vectors. Because vectors represent simultaneously both
magnitude and direction, the similarity and difference measures
naturally characterize the vectors under consideration.

Vol.2012-1S-121 No.3
2012/9/10

Difference=| g -d |

Similarity = cos @

Figure 5. Concept of similarity and difference measures

4.2 Results of Code Retrieval

Table 6 shows the top ten methods obtained by retrieving

source code that includes one try statement and one final
statement. The methods in Table 6 are sorted first by difference
and then similarity. By assigning higher priority to the
difference, only meaningful records are listed at the top
positions. The top four methods are comprised of almost
identical code segments, as shown in Figures 6, and 7.
The three init methods and the contextlnitialized method throw
different handling exceptions, i.e., the init methods throw
ServletException (Figure 6), while contextinitialized does not
(Figure 7). The resulting exception triggers the investigation of
the code in more detail.

Table 6 also indicates other methods containing the same code
segments. In fact, the contents of the two end methods of
Submit.java and UlBean.java consist of almost the same
sequence of statements, as shown in Figures 8 and 9,
respectively. However, they differ in how they handle
exceptions, i.e., the former writes an error message in a log file,
while the latter throws an exception to StrutsException() that is
implemented in Strut 2 Core.

public void init(ServletConfig filterConfig) throws ServletException {
InitOperations init = new InitOperations();
try |
ServletHostConfig config = new ServletHostConfig(filterConfig);
init.initLogging(config);
Dispatcher dispatcher = init.initDispatcher(config);
init.initStaticContentLoader(config, dispatcher);

prepare = new PrepareOperations(filterConfig.getServletContext(), dispatcher);
execute = new ExecuteOperations(filterConfig.getServletContext(), dispatcher);
Hinally {
init.cleanup();
1
}

Figure 6. Init method in StrutsServlet.java

Table 6. Methods including a try-final-statement obtained by source code retrieval

No Package Name File / Class Name Method Name Similarity | Difference | Code Lines
1 |org.apache.struts2.dispatcher.ng.serviet StrutsServlet.java init 1.0000 0.0000 13
2 |org.apache.struts2.dispatcher.ng listener StrutsListener java contextInitialized 1.0000 0.0000 13
3 |org.apache.struts3.dispatcher.ng filter StrutsPrepareFilter java init 1.0000 0.0000 13
4 |org.apache.struts2.dispatcher.ng. filter StrutsPrepareAndExecuteFilter java init 1.0000 0.0000 15
5 |org.apache.struts2.dispatcher FilterDispatcher.java init 1.0000 0.0000 12
6 |org.apache.struts2.interceptor StrutsConversionErrorInterceptor.java getOverrideExpr 1.0000 0.0000 9
7 |org.apache.struts2.util MergelteratorFilter.java next 1.0000 0.0000 7
8 |org.apache.struts2.components Submit.java end 0.8165 1.0000 14
9 |org.apache.struts2.components UlBean.java end 0.8165 1.0000 13
10 |org.apache.struts2.components Component java copyParams 0.8165 1.0000 13

(©2012 Information Processing Society of Japan

IPSJ SIG Technical Report

public void contextlInitialized(ServletContextEvent sce) {
InitOperations init = new InitOperations();
try {
ListenerHostConfig config = new ListenerHostConfig(sce.getServletContext());
init.initLogging(config);
Dispatcher dispatcher = init.initDispatcher(config);
init.initStaticContentLoader(config, dispatcher);

prepare = new PrepareOperations(config.getServletContext(), dispatcher);
sce.getServletContext().setAttribute(StrutsStatics. SERVLET_DISPATCHER, dispatcher);
}Hinally {
init.cleanup();
}
t

Figure 7. Contextlnitialized method in StrutsListener.java

public abstract class UIBean extends Component {
public boolean end(Writer writer, String body) {
evaluateParams();
try {
super.end(writer, body, false);
mergeTemplate(writer,
buildTemplateName(template, getDefaultTemplate()));
} catch (Exceptione) {
throw new StrutsException(e);
}
finally {
popComponentStack();

}

return false;

Figure 8. The end method in Submit.java

public class Submit extends FormButton {
public boolean end(Writer writer, String body) {

evaluateParams();
try {

addParameter("body", body);

mergeTemplate(writer,

buildTemplateName(template, getDefaultTemplate()));

} catch (Exceptione) {

LOG.error("error when rendering”, e);

Vol.2012-1S-121 No.3
2012/9/10

Although syntax matching of control structures is employed,
our approach retrieves similar source code using a characteristic
structure as a query. Table 7 shows the top twelve methods
obtained by using a query vector with the components (0, 0, 0, 0O,
11,1, 0,0, 0, 0), i.e., retrieving source code that includes eleven
if-statements and one else-statement.

publicclass UpDownSelect extends Select {

publicvoid evaluateParams() {

super.evaluateParams();

/f override Select's default

if (size ==null | | size.trim().length() <=0} {
addParameter("size", "5");

H

if (multiple =null | | multiple.trim(}.length{) <=0) {
addParameter("multiple”, Boolean. TRUE);

H

if (allowMoveUp !=null) {
addParameter("allowMoveUp", findValue(allowMoveUp, Boolean.class));

if (allowMoveDown !=null) {
addParameter("allowMoveDown", findValue(allowMoveDown, Boolean.class));
I
if (allowSelectAlll=null) {
addParameter("allowSelectall”, findvalue{ allowSelectall, Boolean.class));
H
if (moveUpLabel '=null) {
addParameter("moveUpLabel", findString{moveUpLabel));
H
if (moveDownLabel l=null) {
addParameter("moveDownLabel", findString{moveDownLabel));

if (selectallLabel I=null) {
addParameter("selectAllLabel”, findString(selectAllLabel));
H
// inform our form ancestor about this UpDownSelect so the form knows how to
// auto selectall options upon it submission
Form ancestorForm = (Form) findAncestor(Form.class);
if (ancestorForm !=null) {
/{ inform form ancestor that we are usinga custom onsubmit
enableAncestorFormCustomOnsubmit{);
Map m = (Map) ancestorForm.getParameters().get("updownselectlds");
if (m==null}{
/{ mapwithkey->id, value->headerkey
m = new LinkedHashMap();
H
m.put(getParameters().get("id"), getParameters().get("headerkey"));
ancestorForm.getParameters().put("updownselectlds", m);

H
} else{
finally { if (LOG.iswarnEnabled()) {
C Stack(): LOG.warn{"no ancestor form found for updownselect "+this+",
) popComponentStack(); therefore autoselect of all elements upon form submission will not work ");
H
return false; H
1 b
. . . Figure 10. The evaluateParams method in
Figure 9. The end method in UIBean.java g)
UpDownSelect.java
Table 7. Methods including eleven if-statements and one else-statement obtained by source code retrieval
No Package Name File / Class Name Method Name Similarity | Difference | Code Lines
1 |org.apache.struts2.components UpDownSelect.java evaluateParams 1.0000 0.0000 41
2 |org.apache.struts2.components InputTransferSelect.java evaluateExtraParams 1.0000 0.0000 50
3 |org.apache.struts2.components Form.java evaluateExtraParams 0.9959 1.0000 36
4 |org.apache.struts2. views.freemarker ScopesHashModel java get 0.9959 1.0000 40
5 |org.apache.struts2.dispatcher.mapper |DefaultActionMapper.java getUriFromActionMapping 0.9959 1.4142 43
6 |org.apache.struts2.components ComboBox.java evaluateExtraParams 0.9938 2.2361 39
7 |org.apache.struts2.interceptor ServletConfigInterceptor.java intercept 0.9959 2.2361 35
8 |org.apache.struts2.interceptor FileUploadInterceptor.java intercept 0.9840 3.1623 67
9 |org.apache.struts2.interceptor ExecuteAndWaitInterceptorjava |doIntercept 0.9739 3.4641 57
10 |org.apache.struts2.interceptor FileUploadInterceptor.java getTextMessage 0.9759 3.4641 60
11 |org.apache.struts2.interceptor FileUploadInterceptor.java acceptFile 0.9491 3.6056 39
12 |org.apache.struts2.components File java evaluateParams 0.9959 4.1231 24

(©2012 Information Processing Society of Japan

IPSJ SIG Technical Report

protected void evaluateExtraParams() {
super.evaluateExtraParams();
if (validate I= null}{
addParameter("validate", findvalue(validate, Boolean.class));

H

if (name == null}{
J//make the name the same as the id
String id = (String) getParameters() get("id");
if (StringUtils.isNotEmpty(id)) {
addParameter("name", id);
1
1

if (onsubmit 1= null) {
addParameter|"onsubmit”, findString{onsubmit));

H

if (onreset I= null) {
addParameter("onreset”, findString{onreset));

1
if {target I= null}{

addParameter("target”, findString{target));
1

if {enctype 1= null}{
addParameter("enctype”, findString(enctype));
1

if {method 1= null}{
addParameter("method”, findString{method));
1

if {acceptcharset 1= null){
addParameter|"acceptcharset”, findString{acceptcharset));

H

// keep a collection of the tag names for anything specialthe templates

Jfmight want to do (such as pure clientside validation)

if {|parameters.containsKey("tagNames")) {
J/ we havethis if check sowe don't do this twice (on open and close of the template)
addParameter("tagNames", new ArrayList{});

1
if (focusElement = null){
addParameter("focusElement”, findString(focusElement));
1
1
Figure 11. The evaluateExtraParams method

in Form.java

The evaluateParams method in UpDownSelect.java file is
shown in Figure 10, and the evaluateExtraParams method in
Form.java file is shown in Figure 11.

The evaluateParams method performs first
super.evaluateParams method for populating parameters, and
then addParameter method for maintaining a parameter list with
respect to each value of parameters. The other three methods of
No. 2, 6, and 12 in Table 7 consist of approximately the same
control statements. The five metods in the
org.apache.struts2.interceptor packge are implemented in a
similar manner including usage of proprietary method in the
package.

The results are of benefit to engineers and students to study
cording techniques in a given context. Because this approach
only uses source codes, in case technical documents are lost, the
results of retrieval provide effective measures for maintenance
engineer to collect source codes that should be considered in a
consistent manner.

(©2012 Information Processing Society of Japan

Vol.2012-1S-121 No.3
2012/9/10

5. Conclusions and Future Work

Open-source programs represent a tremendous resource of
exceptional code that could be used not only for educational
purposes but also for developing practical Web applications.
However, due to the vast amounts of available source codes, it is
difficult to find efficiently the code segments that we want.
Information retrieval techniques can help us extract potential
coding knowledge from source codes.

In this paper, we presented an approach that improves the

retrieval of source code using structural information of control
statements. We have conducted two types of experiments. In the
first, we retrieved the code using the characteristic structure as a
key. In the second we used a vector space model in which
structural metrics were assigned to each element of a vector. In
both experiments, our methods retrieved several sets of source
codes that are presumably maintained in a consistent manner.
A key contribution of our approach is the incorporation of a
difference measurement that improves the vector space model.
The difference measurement was proven especially effective in
distinguishing vectors that have the same direction but differ in
length.

The results are promising enough to warrant future research.
In this study, we focused only on structures of control
statements, and mapped them into a document vector in the
vector space model. In future work, we will work on improving
our methods by combining semantic information, such as
instantiation of a class and implementation of an abstract class,
etc. into structural information. We will also conduct
experiments on various types of open source programs available
on the Internet.

References

[1] Android open source project. 2012. http://source.android.com/.

[2] Baker, B.S. 1996. Parameterized pattern matching: algorithms and
applications. Journal Computer System Science 52, 1 (February
1996), 28-42.

[3] Baxter, I. D., Yahin, A., Moura, L. Sant'/Anna, M., and Bier, L. 1998.
Clone detection using abstract syntax trees. Proc. of the 14th
International Conference on Software Maintenance (November
1998), pp.368-377.

[4] Horwitz, S., Reps, T. W,, and Binkley, D. 1990. Interprocedural
slicing using dependence graphs, ACM Trans. on Programming
Lang. and Sys. 12, 1 (January 1990), pp.1-34.

[5] Jiang, L., Misherghi, G,, Su, Z., and Glondu, S. 2007. DECKARD:
Scalable and accurate tree-based detection of code clones, Proc. of
the 29th international conference on Software Engineering (May
2007), 96-105.

[6] Kamiya, T., Kusumoto, S., and Inoue, K. 2002. CCFinder: A
multi-linguistic tokenbased code clone detection system for large
scale source code. IEEE Transactions on Software Engineering, 28,
7 (July 2002), 654-670.

[7] Di Lucca, G.,, Di Penta, M., Fasolino, A. 2002. An approach to
identify duplicated web pages. Proc. of the 26th international
Computer Software and Applications Conference (August 2002),
481-486.

IPSJ SIG Technical Report

[8] Marcus, A., and Maletic, J. 2001. Identification of high-level
concept clones in source code. Proc. of the 16th international
Conference on Automated Software Engineering (November 2001),
107-114.

[9] Mayland, J., Leblanc, C., and Merlo, E.M. 1996. Experiment on the
automatic detection of function clones in a software system using
metrics, Proc. of the 12th International Conference on Software
Maintenance (November 1996), 244-253.

[10]McCabe, T.J. 1976. A complexity measure, IEEE Transactions on
software engineering, 2, 4 (December 1976), 308-320.

[11]McCreight, E. 1976. A space-economical suffix tree construction
algorithm. Journal of the ACM 23, 2 (April 1976), 262-272.

[12]Salton, G. and Buckley, C., 1988. Term-Weighting approaches in
automatic text retrieval, Information Processing and Management,
24,5 (November 1988), 513-523.

[13] SourceForge. 2012. http://sourceforge.net/.

[14]Struts - The Apache Software Foundation. 2012.
http://struts.apache.org/.

(©2012 Information Processing Society of Japan

Vol.2012-1S-121 No.3
2012/9/10

