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Abstract: In modern chip-multiprocessor systems, DRAM is shared among multiple threads. The memory scheduler
must resolve the inter-thread contention for the DRAM effectiveness. Previously proposed DRAM memory schedulers
have calculated the memory access intensity of each thread for the priority scheduling. Existing methods[2], [3] an-
alyze the number of memory requests served in memory controller to get memory-intensity, but these methods lack
prediction accuracy. TCM[1] avoids this problem by using MPKI information. TCM can improve the prediction ac-
curacy, but takes very long cycles to update the thread priority. As a result, TCM lacks the timeliness of the priority
prediction.
This paper presents a new memory scheduling method, Core-Based Memory scheduling(CBM), which utilizes core
information for memory-intensity evaluation of each thread. Our key idea is 1) to refer the distance of instruction count
between each memory request for the priority calculation, and 2) to place the priority scheduler on each core.
CBM judges the core calculation progress by comparing the instruction counter distance between the new memory
request and the last one. By doing so, CBM can utilize the instruction progress information of each core directly, thus
we can predict the memory-intensity more accurately.
CBM also proposes to calculate the thread priority not on the memory controller but on the private cache of each
core. By doing so, even in concurrent many-channel memory system, CBM can decide priority without the heavy
inter-channel communication. Therefore, CBM accomplishes high timeliness on the priority update.
We evaluate CBM by using the workloads of Memory Scheduling Championship (MSC) and compare its performance
to two existing scheduling algorithms. We found that CBM achieves both the best throughput and fairness.
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1. Introduction

Off-chip DRAM memory has been one of the major bottleneck
of processing due to the higher latency compared to CPU. This
heavy latency gets even longer in chip-multiprocessor(CMP) sys-
tems, in which DRAM memory is shared among multiple threads.
The inter-thread contention in CMP makes the DRAM perfor-
mance worse: each thread issues memory requests simultane-
ously, which wasts spatial and temporal locality with each other
and even causes starvation. To enhance the modern DRAM mem-
ory system efficiently, it is inevitable to handle this inter-thread
contention.

There are three metrics mainly used to evaluate the effective-
ness of memory scheduling algorithms: fairness, system through-
put, and energy consumption. First, the fairness is important for
the multi-thread workloads, otherwise the most delayed thread
will slow down the overall system performance. Second, the
energy consumption should be low because the DRAM energy
consumption is not negligible on the modern CMP systems. Of
course, the system throughput should be high for the effective
DRAM usage.

To achieve the goal of high system throughput and high fair-
ness, several scheduling algorithms have been proposed. State
of the art schedulers exploit the memory-intensity of threads to
improve system throughput. In these methods, memory sched-
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uler takes the strategy of prioritizing the memory-non-intensive
threads over the memory-intensive threads to reduce the total core
stall time in overall system while keeping fairness high. However,
when updating the thread priority, existing methods[1], [2], [3]
need heavy inter-channel communication periodically to gather
the statistical information distributing among every channel. This
long time communication and bandwidth overhead restricts the
priority update frequency low, resulting in the lack of priority pre-
diction timeliness. Moreover, [2], [3] use the Served Requests Per
Cycle(SRPC) on the memory scheduler to estimate thememory-

intensity per instructionof each thread. This SRPC-based strat-
egy cannot distinguish the core calculation time and stall time,
so the estimatedmemory-intensity per instructionnumber is not
accurate.

Our new scheduling algorithm exploits the core information
of each thread to calculate the thread priority based on two
key strategies. First, we use the instruction count distance of
each memory request to calculate the memory-access-intensity.
We can evaluate accurate memory-intensity by referring the in-
struction count because the instruction count describes the core
progress accurately. Therefore, our scheduler can improve the ac-
curacy of memory-intensity estimation. Second, we move the pri-
ority scheduling system from memory scheduler to private cache
of each core. By placing priority scheduler on core side, the pri-
ority scheduler can detect all the memory requests from a core.
This means that the priority scheduler does not need to commu-
nicate all memory channels to gather statistical information of
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Fig. 1 Thenumber of the LLC Miss per 100 Kilo Instruction on Blacksc-
holes workload. The LLC miss rate changes as the calculation pro-
ceeds. We can see the clear tendency of memory-intensity in LLC
Miss per Instruction statistics.

memory requests from a core. Without heavy inter-channel syn-
chronization communication, CBM can update thread priority on
every memory access happening, enabling more timely priority
control.

In this paper, we make the following contributions: 1)We use
the ”instruction counter distance” of each memory access for the
calculation of recent memory-intensity. This method can capture
the immediate change of the thread’s memory-intensity state be-
tween non-memory-intensive phase and memory-intensive phase.
2)We change the placement of priority scheduler from memory
scheduler to private cache of each core. This avoids the heavy
inter-channel communication of gathering statistical information
for priority scheduling. Therefore, we can update the thread pri-
ority at the occurrence of each memory request without suffering
inter-channel priority inconsistency.

2. Background and Motivation

2.1 Memory Access statistics
Previous paper has showed that system throughput improves

by prioritizing low memory-intensity threads. Low memory-
intensity thread spends most of the time in calculation, so the in-
struction throughput(Instruction Per Cycle) is high. In such case,
by prioritizing its memory requests and serving them with low
latency, the thread progresses far. On the other hand, memory-
intensive thread progresses relatively smaller per a memory re-
quest and stalls immediately. In such case, the memory-intensive
thread will progress by rather enhancing row-hit rate and mem-
ory access throughput than improving latency low. Therefore, it
is important to prioritize non-memory-intensive thread for high
system throughput.

Previous schedulers evaluated memory-intensity by analyzing
the number of SRPC(served requests per cycle) or MPKI(miss per
kilo instruction). The figure 1 shows the MPKI data in Blacksc-
holes workload. In figure 1, we can see that the memory-intensity
changes between heavy and light for the progress of instruc-
tion counter. By prioritizing a thread during the non-memory-
intensive phase, the thread will progress far without stalling due
to the long LLC miss.

This MPKI tendency is hard to be recognized by analyzing the
number of SRPC on memory controller. The figure 2 shows the
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(a) TCM (quantalength: 500K cycles)
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(b) TCM (quantalength: 1M cycles)

Fig. 4 Priority transition of TCM. The part with blue background is judged
as the memory-intensive phase, and the part with white background
as the non-memory-intensive phase. TCM scheduling lacks timeli-
ness due to the coarse update policy, so the phase recognition in fig-
ure(a) is wrong near 2.2M instructions and 3.6M instructions. How-
ever, with coarser priority update policy in figure(b), it also lacks
accuracy.

relationship between SRPC and the number of threads running at
a time. SRPC result gets spread uniformly as the thread number
increases, and memory-intensity tendency gets hard to be recog-
nized. Moreover, in figure 2(e), there happens a blank-request
time caused by the core stall time due to the inter-thread interfer-
ence. This blank time is to be judged as memory-intensive phase,
but the judgment is difficult in the multi-channel memory sched-
uler (We will show more details in the next subsection). As a
result, memory-intensity tendency is unrecognizable by only us-
ing SRPC information and not using the core stall information or
MPKI.

2.2 Inter-channel communication and timeliness
Modern DRAM memory has multiple memory channels sep-

arated from each other, so the memory requests which arrive at
a memory channel are invisible to the other memory channels.
[2] showed that inter-channel synchronization between memory
channels is important for the high system throughput. For exam-
ple, even if a channel A serves thread P eagerly, but if channel B
does not prioritize thread P, then the final progression of thread P
is delayed by channel B. In such situation, the system throughput
will get worse due to the delayed threads besides thread P in chan-
nel A. Taken together, prioritizing a thread without synchroniz-
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(a) 1 thread
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(b) 2 thread
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(c) 4 thread
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(d) 8 thread
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(e) 16 thread

Fig. 2 Served Requests per Cycle(SRPC) statistics of the instructions shown in figure 1. We used Close
Page Policy scheduler as the memory scheduler. This graph is derived from one of four memory
channels. Different from figure 1, the memory-intensity tendency gets unclear on SRPC statistics
as the number of running threads increases. Moreover, we can see the blank period near 2,300K
Cycles in figure 2(e). This blank is caused by the inter-thread interference, and should be rec-
ognized asmemory-intensive. However, memory scheduler cannot judge whether this period is
caused by inter-thread interference or not without heavy inter-channel communication.

ing with other channels worsens system throughput. Moreover, if
each memory controller analyses only the information available
in its own channel, it leads to severe mis-prediction as is shown
in figure 6. The inter-channel bias of the request arrival number
is not negligible and causes wrong memory-intensity judgment.
Therefore, it hurts performance to update priority without syn-
chronization process.

For this reason, [1], [3] estimate the MPKI or SRPC by gath-
ering into meta scheduler the memory access history distribut-
ing among memory channels and LLC. This gathering operation
needs heavy communication cost(both latency and bandwidth
consumption), so it cannot be conducted frequently. As a result,
the previous scheduler updates thread priority per very long pe-
riod as long as 10 million clock cycles. As is shown in figure
4, the memory-intensity tendency changes more frequently than
10 million cycles, so the previous method lacks timeliness and
fitness for the priority prediction.

3. Mechanism

CBM is a fine-grain thread priority scheduling method based
on core information. CBM improves the timeliness and accu-
racy of the priority prediction of Thread Cluster Memory sched-
uler(TCM, [1]). CBM consists of two separate modules: priority
scheduler and memory controller.

CBM places the priority scheduling module on each core (we
define the core to which the priority scheduler attached as the
”home core”), not on memory scheduler. Priority scheduler has
two registers: the last instruction counter(LIC) and the burst
counter(BC). LIC stores the instruction counter value (which is
the number of the committed instructions of the home core) of the
last LLC miss request derived from the home core. When a new

memory request occurs, priority scheduler calculates the distance
between the current instruction counter and LIC (We call this dis-
tance ”LIC distance”). If LIC distance exceedsNon-Memory-

Intensive Distance Threshold, the priority scheduler considers
that the next memory request is issued after a long calculation pe-
riod from the last LLC miss. Then, the priority scheduler judges
that the home core is in the non-memory-intensive phase.

On the other hand, the BC counts the number of sequen-
tial memory requests issued in a short while. If LIC distance
is smaller than theMemory-Intensive Distance Threshold, BC
counts up. If LIC distance exceedsNon-Memory-Intensive Dis-

tance Threshold, BC is set 0. When the BC value exceeds
Memory-Intensive Burst Threshold, the priority scheduler con-
siders that the home node is in memory-intensive phase.

When a request misses private cache, priority scheduler pre-
dicts memory-intensity of the current thread based on LIC and
BC value. Then, priority scheduler adds 1-bit Memory-intensity
flag to the memory request. This flag is sent to upper level cache
and main memory. As a result, even if there are several LLC mod-
ules or several memory channels in the system and the requests
from a core are distributed among them, there is no need to gather
the statistical information from them. Similar to the Memory-
intensity flag, 1-bit LLC-Miss flag is attached to the memory ac-
cess response back to the private cache. When a private cache
miss request causes LLC miss and memory access, LLC-Miss
flag is set 1. If the request hits any cache, then LLC-Miss flag is
set 0. Therefore, priority scheduler on each core can track LLC
miss of each request, and also update LIC and BC registers.

As is mentioned above, the LLC miss detection and LIC up-
date happens when a result of LLC miss access returns to home
core. Priority scheduler cannot judge whether in-flight memory
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(a) channel 1
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(b) channel 2
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(c) channel 3
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(d) channel 4

Fig. 3 The number of served requests on each channel from Blackscholes workload (with Close Page
Policy scheduler, and 15 other threads running simultaneously). We can see that near 250K cy-
cles, the memory request arrival is small in channel 1 and 4, but large in channel 2 and 3. This
access pattern happens when the memory requests has high spatial locality and low inter-channel
parallelism. In such case, the memory-intensity appears differently between each channel, leading
to the wrong memory-intensity judgment and inconsistent thread priority scheduling.

(A) Per-Request
Resource Budget
Priority Flag 1-bit

Per-Request 1-bit

(B) Per-Core
Resource Budget
LIC Counter 64-bit
BL Counter 4-bit
Per-Core 68-bit

Table 1 Hardware budget count.

requests are the LLC miss requests or not. For this reason, the
memory-intensity prediction gets inaccurate to some extent while
waiting for any in-flight request. However, the error range due to
this factor is as large as the capacity of the ROB of home core
at most. The capacity of modern ROB is generally from 32 to
128, so this error range is not so large for the memory-intensity
prediction.

4. Implementation

Figure 5 shows the block diagram of CBM scheduler. CBM
requires two hardware support: thread-priority scheduler on each
core and memory scheduler on each memory channel as de-
scribed. The major hardware budget is shown in table 1. The
required hardware storage cost within priority controller is 68bit
per core. The additional hardware cost within memory sched-
uler part is 1bit per read request.The priority scheduler of each
core only needs simple calculation, and the calculation can be

Fig. 5 CBM system structure

conducted by snooping the instruction counter before the mem-
ory request happens. Therefore, it does not have a large effect
on critical path. Each priority scheduler only needs to calculate
the requests from home core, so the calculation time does not in-
crease as the core number increases. The memory scheduler part
does not need the meta scheduler to gather all information dis-
tributing among all channels, so the calculation load of memory
scheduler is smaller than the previous scheduler. For this reason,
CBM method has scalability to both the channel number and the
core number.

4ⓒ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2012-ARC-201 No.9
2012/8/1



Table 2 Comparisonof key metrics on baseline and proposed memory controllers.

Workload Config Sum of exec times (10 M cyc) Max slowdown EDP (J.s)
FR-FCFS Close Proposed FR-FCFS Close Proposed FR-FCFS Close Proposed

MTc 1 chan 398 395 374 NA NA NA 3.85 3.79 3.79
MTc 4 chan 168 158 153 NA NA NA 1.57 1.4 1.31
MTf 1 chan 303 319 305 NA NA NA 2.43 2.54 2.38
MTf 4 chan 238 239 236 NA NA NA 2.95 2.95 2.89

bl-bl-fr-fr 1 chan 147 145 138 1.18 1.16 1.11 0.48 0.46 0.43
bl-bl-fr-fr 4 chan 78 74 73 1.09 1.03 1.02 0.35 0.31 0.3

c1-c1 1 chan 82 82 79 1.1 1.1 1.05 0.4 0.4 0.36
c1-c1 4 chan 52 46 46 1.06 0.95 0.94 0.44 0.36 0.35

c1-c1-c2-c2 1 chan 230 231 212 1.41 1.43 1.31 1.37 1.39 1.21
c1-c1-c2-c2 4 chan 124 115 112 1.15 1.07 1.05 0.95 0.8 0.77

c2 1 chan 43 43 42 NA NA NA 0.36 0.36 0.34
c2 4 chan 30 27 26 NA NA NA 0.49 0.4 0.39

c3-c3-c3-c3-c3-c3-c3-c3 4 chan 210 198 193 1.2 1.14 1.11 0.89 0.8 0.75
c4-c4-c5-c5 1 chan 126 127 124 1.08 1.09 1.07 0.37 0.38 0.36
c4-c4-c5-c5 4 chan 71 67 67 1.04 0.98 0.97 0.31 0.27 0.27
fa-fa-fe-fe 1 chan 215 216 200 1.46 1.44 1.32 1.09 1.07 0.92
fa-fa-fe-fe 4 chan 102 96 92 1.17 1.1 1.06 0.6 0.52 0.49

fl-fl-sw-sw-c2-c2-fe-fe 4 chan 282 268 257 1.33 1.25 1.21 1.95 1.73 1.56
fl-fl-sw-sw-c2-c2-fe-fe 4 chan 618 601 590 1.8 1.73 1.68 4.79 4.45 4.08
-bl-bl-fr-fr-c1-c1-st-st

fl-sw-c2-c2 1 chan 238 235 220 1.39 1.36 1.25 1.36 1.31 1.14
fl-sw-c2-c2 4 chan 127 119 116 1.11 1.04 1.02 0.95 0.8 0.76
le-le-le-le 1 chan 225 226 210 1.42 1.43 1.33 1.15 1.17 1.03
le-le-le-le 4 chan 167 149 150 1.07 0.95 0.96 1.49 1.17 1.2

li-li 1 chan 109 123 119 0.89 1 0.97 0.74 0.92 0.87
li-li 4 chan 94 74 73 1.29 1.02 1.01 1.49 0.95 0.93

li-li-li-mu-mu-mu-ti-ti 4 chan 590 548 526 2.02 1.83 1.72 7.43 6.56 6.28
li-li-mu-mu 1 chan 378 393 398 1.67 1.6 1.61 3.94 3.83 3.84
li-li-mu-mu 4 chan 215 190 185 1.49 1.27 1.24 2.55 2.02 1.94
st-st-st-st 1 chan 159 156 150 1.24 1.23 1.17 0.55 0.54 0.49
st-st-st-st 4 chan 84 80 78 1.12 1.06 1.04 0.38 0.34 0.32

ti-ti 1 chan 169 162 157 1.26 1.2 1.17 1.84 1.68 1.6
ti-ti 4 chan 102 89 87 1.1 0.96 0.94 1.78 1.38 1.34

Overall 6188 6006 5804 1.27 1.21 1.17 51.43 47.22 44.86
PFP: 6407 PFP: 5859 PFP: 5472
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Fig. 6 Priority transition of CBM. The part with blue background is judged
as the memory-intensive phase, and the part with white background
as the non-memory-intensive phase. CBM can enhance timeliness
and accuracy of the memory-intensity recognition from TCM, so the
priority transfers appropriately.

5. Evaluation

We implement CBM scheduler on the memory scheduling
championship framework[4]. We use three metrics for the evalu-
ation: performance, PFP, and EDP score. We compare CBM with
two previously proposed memory scheduler: FR-FCFS, Close
Page Policy. Table 2 shows the evaluation result of each sched-
uler. As is shown in the table 2, CBM outperforms the other

schedulers in all metrics. CBM reduces the total execution time
by 6.2%, the PFP by 14.6%, and the EDP by 12.8% from the
baseline FR-FCFS scheduler.

6. Conclusion and Future Works

We proposed Core Based Memory scheduler (CBM) in this pa-
per. CBM separates the priority scheduler module from memory
controller, and places it on each core. By this separation, CBM
does not need heavy inter-channel communication that was con-
ducted periodically in existing memory scheduling algorithms to
gather the memory request statistics. As a result, CBM can up-
date memory-intensity information every memory access, leading
to finer-grain thread priority update. Therefore, CBM enhances
the timeliness and accuracy of thread priority prediction simulta-
neously. The priority scheduler on CBM is placed on each core
and requires no meta scheduler gathering all statistical informa-
tion, so it is scalable to the overall core number and the memory
channel number in the system. Moreover, memory schedulers
in all memory channels can serve memory requests from a core
synchronously (or, with the same priority) without inter-channel
communication. For this reason, all memory channels can coop-
erate on CBM scheduler efficiently.

We evaluated CBM scheduler by using the memory scheduling
championship framework and its workloads. The experimental
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result showedthat CBM scheduler improves the total execution
time by 6.2%, the PFP by 14.6%, and the EDP by 12.8% from
the baseline FR-FCFS scheduler respectively.

CBM method can be also applied to the case that the transfer
of memory requests will be irregularly delayed, such as Network
on Chip(NoC) structure. The request priority is set by the priority
scheduler on each core, so all requests have already known their
own priority when they are issued from home core. Therefore,
these priority information can be used for the routing algorithm
of NoC for example. Combining CBM scheduling method with
the NoC routing algorithm is our future works.
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