
IPSJ SIG Technical Report

Automatic Generation of Diagram Explanation based on
an Attribute Graph Grammar

Takaaki Goto1,a) Tetsuro Nishino1,b) Kensei Tsuchida2,c)

Abstract: Unified Modeling Language (UML) has already been used in the analysis, design, and implementation of
many systems. Open Source Software (OSS) is often used in software development. However, it is often the case that
OSS does not contain adequate documents, so the generation of software documents is important. Documents with
diagrams are especially important to understand software, so it is important to generate documents with diagrams. In
order to process large-scale diagrams, or many source codes automatically, formal and declarative representation is
needed. In this paper, we propose automatic generation of documentation based on an attribute graph grammar.

1. Introduction

In the software development environment, it is desirable to
have features that support programming. Many effective tools
have been developed to provide a framework for developing re-
liable programs. In software development, software documents
are very important to develop or modify systems. Graphical rep-
resentations such as flowchart or Unified Modeling Language
(UML) are often used in software design and development be-
cause of their expressiveness.

UML for modeling in software development has been proposed
recently. In 2005, ISO/TEC 19501 became the standard. UML
has already been used in the analysis, design, and implementation
of many systems. It makes use of various types of diagrams, such
as class and sequence diagrams, for designing processes in sys-
tem development, from upstream to downstream processes. In or-
der to automate the processing of these graphical representations
using computers, a syntax for program diagrams must first be de-
fined. Then, in order to analyze the syntax of two-dimensional
objects such as program diagrams, the relationships between each
of the elements must also be described. Graph grammars are one
possible effective means for implementing these methods. Graph
grammars provide a formal method that enables rigorous defini-
tion of mechanisms for generating and analyzing graphs. The
authors of the current paper have proposed a graph grammar for
package diagrams of UML [1].

Open Source Software (OSS) is often used in software devel-
opment. However, it is often the case that OSS does not contain
adequate documents. Software documents are needed in order

1 Graduate School ofInformatics and Engineering, The University of
Electro-Communications, Chofu, Tokyo 182-8585, Japan

2 Faculty of Information Science and Arts, Toyo University, Kawagoe,
Saitama 350-8585, Japan

a) gototakaaki@uec.ac.jp
b) nishino@ice.uec.ac.jp
c) kensei@toyo.jp

to use or modify OSS, however, there are so many examples of
source code with no documents, therefore, we need to generate
documents from source code. Moreover, documents with dia-
grams are especially important to understand software, so it is
important to generate documents with diagrams. This is why we
started our research so that we can obtain documents with dia-
grams automatically.

Thus far, much research has targeted UML or software docu-
ments. Research has also been done on UML [2] and graph gram-
mars and graph transformations with respect to UML [3], [4], [5].
However, no research focuses on syntax formalization for visual
representation. As for software document generation, some re-
search has been done [6], [7], [8]. This research targets docu-
mentation generation through program source code or diagrams.
The formal method is not treated in this framework.

In order to process large-scale diagrams, or large amounts of
source code automatically, formal and declarative representation
is needed. In this paper, we propose automatic generation of doc-
umentation based on an attribute graph grammar.

2. Preliminary

2.1 Graph Grammars
Definition 1. ([9],[10]) Let Σ be an alphabet of node labels
and Γ be an alphabet of edge labels. Agraph over Σ and Γ
is a tuple H = (V,E, λ), where V is the finite set of nodes,
E ⊆ {(v, γ, w) | v, w ∈ V, v , w, γ ∈ Γ} is the set of edges,
andλ : V → Σ is the node labeling function.E(v, w)

def
= {γ ∈

Γ | (v, γ, w) ∈ E}. The label tupleof two nodesv, w ∈ V is
lab(v, w)

def
= (λ(v),E(v, w),E(w, v), λ(w)). �

Definition 2. ([9]) A graph with(neighborhood controlled)em-

beddingover Σ and Γ is a pair (H,C) with H ∈ GRΣ,Γ and
C ⊆ Σ × Γ × Γ × VH× {in, out}. C is the connection relation

of (H,C), and each element (σ, β, γ, x,d) of C (with σ ∈ Σ, β, γ ∈
Γ, x ∈ VH , andd ∈ {in, out}) is aconnection instructionof (H,C).
A connection instruction (σ, β, γ,x,d) will always be written as

© 2012 Information Processing Society of Japan 1

Vol.2012-MPS-89 No.9
2012/7/16

IPSJ SIG Technical Report

(σ, β/γ, x,d). Two graphs with embedding (H,CH) and (K,CK)
are isomorphic if there is an isomorphismf from H to K such
thatCK = {(σ, β/γ, f (x), d) | (σ, β/γ, x,d) ∈ CH}. The set of all
graphs with embedding overΣ andΓ is denoted asGREΣ,Γ. �

Figure 1 shows an example of a graph. In Figure 1H =

(VH ,EH , λH) is a graph withVH = {n1,n2}, EH = {(n1, α, n2)},
λH(n1) = a andλH(n2) = X. Here,n1 andn2 indicate node ID.
Furthermorea, andX indicate node labels, nodes with a lower-
case node label and with a uppercase node label are terminal node
and nonterminal node, respectively,

a α
X

H

n1
n2

Fig. 1 An example of a graph

Definition 3. ([9]) An edNCE graph grammaris a six-tuple
GG = (Σ,∆,Γ,Ω,P,S), whereΣ is the alphabet of node labels,
∆ ⊆ Σ is the alphabet of terminal node labels,Γ is the alpha-
bet of edge labels,Ω ⊆ Γ is the alphabet of final edge labels,
P is the finite set ofproductions, andS ∈ Σ − ∆ is the initial

nonterminal. A production is of the formX → (D,C) where
X is a nonterminal node label,D is a graph overΣ andΓ, and
C ⊆ Σ × Γ × Γ × VD × {in,out} is the connection relation, which
is a set of connection instructions. A pair (D,C) is a graph with
embedding overΣ andΓ. �
Definition 4. (cf. [9], [10]) Let G = (Σ,∆,Γ,Ω,P,S) be an ed-
NCE graph grammar. LetHi−1 = (VHi−1 ,EHi−1 , λHi−1) and Hi =

(VHi ,EHi , λHi) be graphs inGREΣ,Γ. In addition, letvi ∈ VHi−1 , and
p′i : X→ (D′i ,C

′
i) ∈ P be a production copy ofG such thatD′i and

Hi−1 are disjoint.si = (p′i , vi ,D
′
i ,b
′
i) is aderivation specification

of G if p′i ∈ copy(P), λHi−1(vi) = X, D′i � D, b′i : VD′i
→ VDi .

We writeHi−1 →vi ,p′i Hi , or justHi−1 →
si

Hi , if λHi−1 (vi) = X and

Hi = Hi−1[v i/(D′i ,C
′
i)]. Hi−1 →

si

Hi is called aderivation step, and

a sequence of such derivation steps is called aderivation. �

X

v0

Y
b γ

v1
v2

Fig. 2 An example of a production

An example of a production is shown in Figure 2. In the figure,
a box is a nonterminal node and a filled circle is a terminal node.
X, Y, andb are node labels andv0, v1, andv2 are node IDs. Nodes
with the same node label can appear in a graph, while nodes with
same node ID will never appear in a graph. The production of
Figure 2 indicates that after the removal of a nonterminal node
with label X, embed the graph consisting of terminal node with
labelb and the nonterminal node with labelY. Each production
has connection instructions. The connection instruction of this
production is (a, α/β, v1, in), but this connection instruction is not
described in the notation of Figure 2.

In Figure 3, the production of Figure 2 and its connection in-
struction are drawn simultaneously. The large box in Figure 3

indicates the left-hand side, and two nodes with labelb andY are
on the right side of the production of Figure 2. Node labels and
edge labels that are described outside of the large box indicate
connection instruction such that (a, α/β, v1, in).

X

Y
bβ γα

a

v0

v1
v2

Fig. 3 An example of a production with the connection relation

An example of application of the production is shown in Figure
4. In Figure 4,H = (VH ,EH , λH) is a graph withVH = {n1,n2},
EH = {(n1, α, n2)}, λH(n1) = a, andλH(n2) = X. The production
copy p′ of p is as follows:p′ : X → (D′,C′) whereX = λH(n2),
D′ = (VD′ ,ED′ , λD′) such thatVD′ = {n3,n4}, ED′ = {(n3, γ, n4)},
λD′ (n3) = b, λD′ (n4) = Y, andC′ = {(a, α/β,n3, in)}.

a a b
Y

α β γ
X

H H'

n1 n2
n1 n3 n4

n2, p'

Fig. 4 An example of applying a production rule

We say thatH is thehost graphandH′ is theresulting graph,
X is themother nodein Figure 4, the graph consisting of terminal
node with labelb and the nonterminal node with labelY in Figure
2 is thedaughter graph. At first, we remove the nodeX and edges
that connect with nodeX from host graphH. Next, we embed the
daughter graph, including nodeb and nodeY. Then we establish
edges between the nodes of daughter graph and the nodes that
were connected to the nodeX using the connection instructions
on the productionp′. Therefore, the edge labelα is rewritten toβ
by the productionp′.
Definition 5. ([11], [12]) An Attribute edNCE Graph Grammar

is a three-tupleAGG= ⟨GG,Att, F⟩, where
1. GG = (Σ,∆,Γ,Ω,P,S) is called anunderlying graph gram-

mar of AGG. Each productionp in P is denoted byX→ (D,C).
2. Each node symbolY ∈ Σ of GG has two disjoint finite

setsInh(Y) andSyn(Y) of inherited andsynthesized attributes,
respectively. The set of all attributes of symbolX is defined as
Att(X) = Inh(X) ∪ Syn(X). Att =

∪
X∈Σ Att(X) is called theset

of attributesof AGG. We assume thatInh(S) = ∅. An attribute
a of X is denoted bya(X), and the set of possible values ofa is
denoted byV(a).

3. Associated with each productionp = X0 → (D,C) ∈ P

is a setFp of semantic rules, which define all the attributes in
Syn(X0)

∪
X∈Lab(D) Inh(X). A semantic rule defining an attribute

a0(Xi0) has the forma0(Xi0) := f (a1(Xi1), · · ·, am(Xim)). Here f is a
mapping fromV(a1(Xi1))×···×V(am(Xim)) into V(a0(Xi0)). In this
situation, we say thata0(Xi0) depends ona j(Xi j) for j, 0 ≤ j ≤ m

in p. The setF =
∪

p∈P Fp is called theset of semantic rulesof
G. �

© 2012 Information Processing Society of Japan 2

Vol.2012-MPS-89 No.9
2012/7/16

IPSJ SIG Technical Report

Attribute values are calculated by evaluating attributes accord-
ing to semantic rules on the derivation tree.

2.2 UML
Unified Modeling Language (UML) is a notation for model-

ing object-oriented system development using diagrams. UML
can be divided into structural diagrams and behavioral diagrams.
Structural diagrams are used to describe the structure of what is
being modeled and include class, object, and package diagrams.
Behavioral diagrams are used to describe the behavior of what is
being modeled and include use-case, activity, and state-machine
diagrams.

Structural diagrams include class diagrams, which describe
the static relationships between classes, and package diagrams,
which group classes and describe relationships between packages
and package nesting relationships.

+

Package1

+

+

Package2 Package4

Class1 Class2Package3

Fig. 5 An example of a package diagram

Figure 5 shows an example of a package diagram. The box
with a rectangle at the upper left indicates a package. The box
with three compartments is a class. Each of the three parts indi-
cates its class name, its attribute, and its methods from top to the
bottom. A plus with a circle is used to represent which compo-
nents the package contains. Package 1 contains Package 2 and
Package 4, and Package 4 contains Class 1 and Class 2.

3. Graph Grammar for UML Package Dia-
grams

In this section, we describe our Graph Grammar for Package
Diagrams (GGPD), for UML package diagrams.

3.1 Grammar Overview
Definition 6. 　 The Graph Grammar for Package Diagrams
(GGPD), for UML package diagrams, is a six-tupleGGPD =

(ΣPD, ∆PD, ΓPD, ΩPD, PPD, SPD). Here,ΣPD = { S, A, T, L,
R, M, rop, sp, lep, rip, mip, lec, mic, ric} is a finite set of node
labels,∆PD = { rop, sp, lep, rip, mip, lec, mic, ric} is a finite set of
terminal node labels,ΓPD = { ∗ }, ΩPD = { ∗ }, PPD = { P1, ...,P17

} is a finite set of production rules, andSPD = { S } is the initial
non-terminal. �

The GGPD generates package hierarchy diagrams. Terminal

nodes generated by GGPD have the following node labels: rop
(root of package), sp (single package), lep (left side package), rip
(right side package), mip (package located between lep and rip),
lec (left side class), ric (right side class), and mic (class located
between lec and ric).

GGPD is a context-free grammar and there are 17 production
rules. An example of GGPD production rule is shown in Figure
6.

T

lep

L

0

1

2

Fig. 6 An Example of a production rule of GGPD

In the figure, the production rule can be applied to a node la-
beledL, which is a non-terminal node, to generate a terminal node
with the label lep, representing a package, and a non-terminal
node labeledT.

A node with a capitalized label indicates a nonterminal node,
and a node with an uncapitalized label indicates a terminal node.
Our grammar generates directed graphs. However, we drew the
graphs without arrows as we assumed the direction of each edge
was from the top down.

We omit descriptions of all of the production rules because of
space limitations.

3.2 Example of Derivation
Figure 7 shows an example of a GGPD derivation. In this ex-

ample,G0 is a graph with the node labeledS. The node ID is 1
(lower right of the node).

Then the production ruleP1 is applied to a non-terminal node
labeledS with node ID 1, which is the initial non-terminal node.
That is, remove a mother node with labelS and node ID 1, then
embed a daughter graph in theP1. In this case, the daughter graph
is the node with labelA. This produces the non-terminal node
labeledA with node ID 2, to which theP3 production rule is ap-
plied. That is, graphG1, which consists of node with node ID 2,
is obtained.

After application of the productionP3, the terminal node la-
beledrop and a non-terminal node labeledT are generated. We
apply productions to obtain a graph that corresponds to UML
package diagrams. In this case, we can obtain graphG9.

We can obtain a derivation tree from a derivation sequence of
production. Figure 8 shows the derivation tree corresponding to
Figure 7. In Figure 8, the labels show the names of the production
rules.

© 2012 Information Processing Society of Japan 3

Vol.2012-MPS-89 No.9
2012/7/16

IPSJ SIG Technical Report

⇒

⇒

G1:

G2:

G3:

G0:

G4:

⇒

S

1

P1

S

A

2

1

A

2

T

+

rop

3

4

P6

T

L R

+

rop

3

5

L R

6

1, P1'

2, P3'

4, P6'

5, P9' P9

L

T

+

lep

+

rop

3

7
6

lep
R

T

+

8

⇒
6, P13'

G6:

+

rop

3

7

lep

+

9

sp T

+

rip

11

10

⇒
11, P6'

G7:

+

rop

3

7

lep

+

9

sp

+

rip

10

12

L R

13

⇒
12, P10'

G8:

+

rop

3

7

lep

+

9

sp

+

rip

10

14

R

13

lec

⇒
13, P14'

G9:

+

rop

3

7

lep

+

9

sp

+

rip

10

14

lec

15

ric

P3

A

T

+

rop

2

3

4

4

5 6

5

7

8

P13

R

T

+

rip

6

10

11

P6

T

L R

11

12 13

P10
lec

L

12

14

P14
ric

R

13

15

G5:

⇒
P4

sp

T

8, P4'

+

rop

3

7
6

lep
R

+

9

sp

9

8

Fig. 7 An example of a GGPD derivation

P1

P3

P6

P10

P9

P4

P13

P6

P14

Fig. 8 A derivation tree corresponding to the tree in Figure 7

4. Document Generation

In this section, we explain some attributes and semantic rules
for document generation. In this paper, we target a documentation
that has diagrams and explanations that correspond to diagrams.
We generate documents by attribute evaluation that can be exe-
cuted automatically on derivation trees.

We can obtain derivation trees after generating diagrams based
on our grammar. Figure 8 shows an example of a derivation tree.
In the Figure, for example, Production 3 (P3) is applied to a node
that was generated by Production 1 (P1). Derivation trees de-
scribe a process of applying productions.

Every node generated by productions of GGPD has some at-

© 2012 Information Processing Society of Japan 4

Vol.2012-MPS-89 No.9
2012/7/16

IPSJ SIG Technical Report

tributes. An attribute has two types of values called inherited at-
tributes and synthesized attributes. Attribute values are obtained
by calculating semantic rules on derivation trees. Values of inher-
ited attributes are calculated by top-down on derivation trees, and
bottom-up calculation generates values of synthesized attributes.

Figure 9 shows an example of production rules and their cor-
responding semantic rules. The upper part of Figure 9 indicates
a production rule and the lower part shows semantic rules. This

T

rip

R

0

1

2

local(0) = local(1)

local(1) = “package <package name>”

global(0) = local(1)”has”local(2)

Fig. 9 An Example of an attribute for document generation of GGPD

production rule rewrites a nonterminal node with node label R to
a graph consisting of terminal node rip and nonterminal node T.

P6

P9 P13

P4 P6

P10 P14

local(8) = local(9)

local(9) = “package <name>”

global(8) = “”

local(5) = local(7)

local(7) = “package <name>”

global(5) = local(7)” has ”

 local(8)global(8)

local(12) = local(14)

local(14) = “class <name>”

global(12) = “”

local(13) = local(15)

local(15) = “class <name>”

global(13) = “”

local(11) = local(12) local(13)

global(11) = global(12)global(13)

local(6) = local(10)

local(10) = “package <name>”

global(6) = local(10)” has ” local(11)global(11)

P1

P3

local(4) = local(5) local(6)

global(4) = global(5)global(6)

local(2) = local(3)

local(3) = “package <name>”

global(2) = local(3)” has ” local(4)global(4)

global(1) = global(2)

Fig. 10 A derivation tree with document generation attributes

In the semantic rules part, we then find three semantic rules that
process the values of local and global attributes. The global at-
tribute preserves the entire explanation of the diagrams. The local
attribute retains local information such as parent and child rela-
tions. These attributes are categorized as synthesized attributes.

In Figure 9, local(1) stores node name of the node with ID 1
(in this case, package diagram’s name); the value of local(1) is
assigned to local(0).

Figure 10 shows an example of a derivation tree with document
generation semantic rules corresponding to Figure 7.

In order to obtain documentation, attribute evaluation is pro-
cessed following a bottom up orderP4 → P9 → P10 → P14 →
P6 → P13→ P6 → P3 → P1.

First, P4 located at the lower left on the derivation tree is pro-
cessed. In this case, we assume that the package name is “pack-
age 9,” which is substituted for the local attribute of the node with
ID 9. Local(9) is substituted for local(8). Null is substituted for
global(9)

Next, P9 is processed. Here, package name is substituted for
local(7), and local(5) has the value of local(7). The global(5)
stores a partial explanation of diagrams. In this case, global(5)
holds information that node with ID 7 in Figure 7 has packages.
The global(5) has the following sentence: “package 7 has pack-
age 9”.

Global value is similarly obtained from the above proce-
dure. The global(1) explains the entire diagram; in this example,
global(1) is explained in Figure 11.

Since semantic rules are declarative defined, we can obtain an
explanation corresponding to diagrams if once we define the se-
mantic rules.

Package 2 has package 3.

Package 4 has class 5, class6.

Package 1 has package 2, package 4.

Fig. 11 An example of obtained explanation

5. Conclusion

In this paper, we have defined attributes and semantic rules for
a graph grammar for UML package diagrams. We can generate
documents corresponding to diagrams automatically according to
a declarative definition.

A future issue for study is the synchronization between dia-
gram and documentation and the implementation of systems that
can generate documents with animation. We would also like to
construct a graph grammar for other diagrams in UML.

References

[1] Takaaki Goto, Tetsuro Nishino, Kensei Tsuchida, “An Attribute Graph
Grammar for UML Package Diagrams and its Applications,” inPro-
ceedings of The 2011 International Conference on Parallel and Dis-
tributed Processing Techniques and Applications, Volume II, 2011, pp.
693–698.

[2] L. Kotulski and D. Dymek, “On the Modeling Timing Behavior of the
System with UML(VR),” inComputational Science ICCS 2008, ser.
Lecture Notes in Computer Science, vol. 5101, 2008, pp. 386–395.

[3] F. Hermann, H. Ehrig, and G. Taentzer, “A Typed Attributed Graph
Grammar with Inheritance for the Abstract Syntax of UML Class and
Sequence Diagrams,”Electron. Notes Theor. Comput. Sci., vol. 211,
pp. 261–269, April 2008.

[4] Kong, Jun and Zhang, Kang and Dong, Jing and Xu, Dianxiang,
“Specifying behavioral semantics of UML diagrams through graph
transformations,”J. Syst. Softw., vol. 82, pp. 292–306, 2009.

[5] D. Petriu and H. Shen, “Applying the UML Performance Profile:
Graph Grammar-Based Derivation of LQN Models from UML Spec-
ifications,” in Computer Performance Evaluation: Modelling Tech-
niques and Tools, ser. Lecture Notes in Computer Science, vol. 2324,
2002, pp. 183–204.

[6] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in Proceedings of the IEEE/ACM international conference on
Automated software engineering, ser. ASE ’10. New York, NY, USA:
ACM, 2010, pp. 43–52.

[7] F. Meziane, N. Athanasakis, and S. Ananiadou, “Generating natural

© 2012 Information Processing Society of Japan 5

Vol.2012-MPS-89 No.9
2012/7/16

IPSJ SIG Technical Report

language specifications from uml class diagrams,”Requirements En-
gineering, vol. 13, pp. 1–18, 2008, 10.1007/s00766-007-0054-0.

[8] J. W. Nimmer and M. D. Ernst, “Automatic generation of program
specifications,”SIGSOFT Softw. Eng. Notes, vol. 27, pp. 229–239,
July 2002.

[9] G. Rozenberg,Handbook of Graph Grammar and Computing by
Graph Transformation Volume 1. World Scientific Publishing, 1997.

[10] M. Kaul, “Practical applications of precedence graph grammars,” in
Graph Grammars and Their Application to Computer Science, ser.
LNCS 291, 1986, pp. 326–342.

[11] T. Nishino, “Attribute Graph Grammars with Applications to Hichart
Program Chart Editors,” inAdvances in Software Science and Tech-
nology, vol. 1, 1989, pp. 89–104.

[12] T. Arita, K. Sugita, K. Tsuchida, and T. Yaku, “Syntactic Tabular
Form Processing by Precedence Attribute Graph Grammars,” inProc.
IASTED Applied Informatics 2001, 2001, pp. 637–642.

© 2012 Information Processing Society of Japan 6

Vol.2012-MPS-89 No.9
2012/7/16

