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Abstract— One of the important issues of machine learning
is obtaining essential information from high-dimensional
data for discrimination. Dimensionality reduction is a means
to reduce the burden of dimensionality due to large-scale
data. Feature selection determines significant variables and
contributes to dimensionality reduction. In recent years,
the random forests method has been the focus of research
because it can perform appropriate variable selection even
with high-dimensional data holding high correlations be-
tween dimensionality. There exist many feature selection
methods based on random forests. These methods can appro-
priately extract the minimum subset of important variables.
However, these methods need more computation time than
the original random forests method. An advantage of the
random forests method is its speed. Therefore, this paper
aims to propose a rapid feature selection method for high-
dimensional data. Rather than searching the minimum subset
of important variables, our method aims to select meaningful
variables quickly under the assumption that the number of
variables to be selected is determined beforehand. Two main
points are introduced to enable faster calculations. One
is reduction in the calculation time of weak learners. The
other is adopting two types of feature selection: “filter” and
“wrapper.” In addition, although most present methods use
only “mean decrease accuracy,” we calculate the magnitude
of features by combining “mean decrease accuracy” and
“Gini importance.” As a result, our method can reduce
computation time in cases where generated trees have many
nodes. More specifically, our method can reduce the number
of important variables to0.8% on an average without
losing the information for classification. In conclusion, our
proposed method based on random forests is found to be
effective for achieving rapid feature selection.
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1. Introduction
In recent years, feature selection for dimensionality re-

duction is becoming increasingly important in machine
learning. Feature or variable selection enables improving
accuracy by excluding redundant variables and facilitates the
interpretation of complex data structures as well as reduces
calculation time for predictors. Therefore, variable selection
for high-dimensional data plays an important role in many

areas including text processing of internet documents, gene
expression array analysis and combinatorial chemistry. In
this paper, we propose a rapid feature selection method for
high-dimensional data.

There are three types of variable selection: “filter,” “wrap-
per,” and “embedded” [1], [2]. “Filter” selects subsets of
variables in a preprocessing step, independent of the chosen
predictor. “Wrapper” utilizes the learning machine of interest
as a black box to score subsets of variables according to their
predictive power. “Embedded” performs variable selection
during the training process and is usually specific to given
learning machines. The random forests (RF) method [3]
based on the wrapper method has been widely recognized
as a practical method of variable selection. In recent years,
the RF method has also been applied to feature selection for
hyperspectral imagery and gene selection of microarray data
[4], [5]. Furthermore, the demand for variable selection has
been increasing.

The RF method has two types of variable importance mea-
sures. One involves the evaluation of “out-of-bag (OOB)
errors” introduced to estimate prediction errors. Several
feature selection methods using this measure have been
proposed [6], [7], [8].

The other measure is derived from the Gini index and
is called “Gini importance.” This measure is biased toward
predictor variables with many categories [9]. However, it is
particularly effective with data that have a high dimension-
ality and small sample size [10]. There also exists a feature
selection method using “Gini importance” [11].

These feature selection methods, which are extended RF
methods, can appropriately extract the minimum subset
of important variables. Because the RF method itself is
stochastic, the subsets obtained by these methods are only
a candidate of the optimal solution; moreover, if sufficient
computation time is provided, these methods are attractive.

In this paper, we assume that the number of important
variables to be selected is decided beforehand and propose
a fast method to select meaningful variables with a high ac-
curacy. As a result of investigating the ranking of important
variables derived from various datasets by using the original
RF method, we obtain the following empirical rule: the
rankings drawn from two types of variable importance mea-
sures slightly differ, whereas the members of the top ranked
variables are almost the same. Based on this empirical rule,
we improve the original RF method and successfully reduce
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computation time, especiallyin cases where generated trees
have many nodes. In addition, in our method, the number of
important variables is reduced to0.8% on an average without
losing the information for discrimination. In conclusion, our
proposed method based on RF is effective to achieve rapid
variable selection. The reason why our method is successful
is not solved mathematically; the results obtained by our
method are very interesting.

In the following section, we review RF and “Gini impor-
tance”; we explain our proposed method in section2.

1.1 Random forests algorithm
The RF method creates multiple trees using classification

and regression trees (CART) [12]. When constructing a tree,
the RF method searches for only a random subset of input
variables at each splitting node and the tree grows fully
without pruning. The RF method is recognized as a specific
instance of bagging.

Random selection of variables at each node decreases the
correlation among trees in a forest, thus forest error rate
decreases. The random subspace selection method has been
demonstrated to perform better than bagging when there
are many redundant variables contributing to discrimination
among classes [13], [14], [15].

The computational load of the RF method is compar-
atively light. The computation time is on the order of
ntree

√
mtry n log n, wherentree is the number of trees,

mtry is the number of variables used in each split, andn
is the number of training samples [3], [4].

In addition, when a separate test set is not available,
an OOB method can be used. For each newly generated
training set, one-third of the samples are randomly excluded;
these are calledOOB samples. The remaining (in-the-
bag) samples are used for building the tree. For accuracy
estimation, votes for each sample are counted every time a
sample is included amongOOB samples. A majority vote
determines the final label. TheOOB error estimates are
unbiased in many tests [3]. The number ofmtry is defined
by a user, and it is insensitive to the algorithm.

The RF algorithm (for both classification and regression)
is as follows:

1) Drawntree bootstrap samples from the original data.
2) For each bootstrap sample, randomly samplemtry

predictors (variables) at each node, grow an unpruned
classification or regression tree, and choose the best
split among these variables (rather than choosing the
best split among all variables).

3) Predict new data by aggregating the predictions of
ntree trees (i.e., majority vote is used for classifica-
tion, average is used for regression).

Based on training data, an error rate estimate can be
obtained as follows:

1) At each bootstrap iteration, predict test data not in
the bootstrap sample (what Breiman calls “out-of-bag”

or OOB data) using a tree grown with the bootstrap
sample.

2) Aggregate theOOB predictions. Calculate their error
rate, and call itOOB error rate estimate.

The RF method performs efficiently for large datasets and
can handle thousands of input variables. The RF algorithm
has been demonstrated to have excellent performance in
comparison to other machine learning algorithms [3], [16],
[17].

1.2 Gini importance
The RF method has extremely useful byproducts, for

instance, variable importance measures [3], [18]. There are
two different algorithms for calculating variable importance.

The first algorithm is based on the Gini criterion used to
create a classification tree, CART [12]. In this paper, we call
the measure “Gini importance.” At each node, decreases in
Gini impurity are recorded for all variables used to form the
split. Gini impurity ∆GI(t) is defined as follows:

∆GI(t) = PtGI(t)− PLGI(tL)− PRGI(tR).

Here, GI(t) is called the Gini index and is defined as
follows:

GI(t) = 1−
∑
k

p(k | t)2,

wherep(k | t) is the rate at which classk is discriminated
correctly at nodet, GI(tL) is a Gini index on the left side
of the node,GI(tR) is a Gini index on the right side of the
node,Pt is the number of samples before the split,PL is
the number of samples on the left side after the split, and
PR is the number of samples on the right side after the split.
The Gini criterion is used to select the split with the highest
impurity at each node. The average of all decreases in Gini
impurity yields the “Gini importance” measure.

The second algorithm is based onOOB observations. In
this paper, we call the measure “mean decrease accuracy.”
Although the structure of a decision tree provides informa-
tion concerning important variables, such an interpretation is
difficult for hundreds of trees in an ensemble. One additional
feature of RF is the ability to evaluate the importance of each
input variable by theOOB estimates. To evaluate the im-
portance of each variable, the values of each variable in the
OOB samples are allowed to permute. The perturbedOOB
samples will run down each tree again. Then, the difference
between the accuracies of the original and perturbedOOB
samples over all trees in RF are averaged.

Variable importance of “mean decrease accuracy” is de-
fined as follows: LetXj(j = 1, · · · ,M) be the permuted
variables, whereM is the number of all variables.Xj and
the remaining nonpermuted predictor variables together form
a perturbedOOB sample. WhenXj is used to predict
the response for theOOB sample, the prediction accuracy
(i.e., the number of samples classified correctly) decreases
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substantially, ifthe original variableXj is associated with
the response. For each treef of the forest, consider the
associatedOOBf sample (data not included in the bootstrap
samples used to constructf ). The error of a single treef in
thisOOBf sample is denoted byerrOOBf . Now, randomly
permute the values ofXj in OOBf to get a permuted sample
denoted byOOBfj and computeerrOOBfj , the error of
predictorf in the perturbed sample. Variable importance of
Xj is then equal to

V I(Xj) =
1

ntree

∑
f

(errOOBf − errOOBfj ),

where the summation is over all treesf of RF andntree
denotes the number of trees of RF.

2. Rapid Feature Selection Based on
Random Forests

We investigate the ranking of important variables derived
from various datasets by using the original RF method and
obtain an empirical rule: the rankings of important variables
obtained from “Gini importance” and “mean decrease accu-
racy” differ slightly, whereas the members of the top ranked
variables are almost the same. Thus, if we can determine
these members of the top ranked variables obtained from
“Gini importance,” we can rank variable importance by
“mean decrease accuracy.”

To realize this idea, we combine “Gini importance” and
“mean decrease accuracy” as “filter” and “wrapper.” We
propose an improved method of RF and call it “rapid
feature selection” method (RFS). After reducing meaningless
variables by “filter,” rapid feature selection evaluates variable
importance by “wrapper.”

“Gini importance” can be acquired from the generation
process of weak learners, thus it is convenient to use the
“Gini importance” measure as a “filter.” However, sometimes
we cannot obtain high accuracy by only using such a “filter.”
On the other hand, “mean decrease accuracy” is high; “mean
decrease accuracy” is computationally heavy because it has
to call on the learning algorithm to evaluate each subset.

The rapid feature selection algorithm is as follows:

1) ExcludeOOB data and drawntree bootstrap samples
from training data.

2) For each bootstrap sample, randomly samplemtry
variables, grow a tree up to the first node, and record
all Gini impurities generated in the calculation process.

3) Choose the topv variables that are candidates for the
best split, give a score that reflects the top rankedv
variables forntree trees, and aggregate all scores.

4) To select the tops important variables, choose the top
se variables at this point (se is larger thans).

5) Rankse variables by “mean decrease accuracy” of the
original RF method and select the topv variables.

Table 1: Information about each dataset
Dataset Samples Variables Class Accuracy
Internet

Advertisements
3,279 1,558 2 0.963

Gisette 6,000 5,000 2 0.964

Fig. 1: Simulation:Relationship betweenv andPs. Number
of variables:1, 558.

In the case that some variables are correlated, CART can
choose the best split. However, CART needs the calculation
of Gini impurity up to 2n−1 − 1 times in the worst case,
wheren is the number of samples in each bootstrap sample.
Thus, reducing the calculation time of CART is a significant
issue in this method.

To reduce the calculation time of CART, some RF applica-
tions have an option to stop calculation at the first node. This
option is effective in reducing computation time; however,
the appropriate evaluation of important variables cannot be
obtained. Necessary information will be insufficient when
v = 1 owing to the nature of the data; therefore, we set a
parameterv.

Under the assumption that CART can accurately rank
variables and all variables are independent, we simulated
the behavior of these parameters. In the simulation, we used
the number of variables from Table 1.

LetPs be a probability that the tops variables are included
in the topse variables. The relationship amongPs and the
other parameters are shown in Figures 1,2,3,4 and 5. The
parameters that are not a target of the investigation are set
as follows:se = 35, s = 20, v = 5 andntree = 100 for the
case of1, 558 variables (Figures 1,3,4 and 5), andse = 70,
s = 55 and ntree = 100 for the case of5, 000 variables
(Figure 2).

From Figures 1 and 2, we can find that the optimalv
changes owing to the number of variables. Because CART
cannot necessarily rank variables correctly and all variables
are not independent in real data, in practice, the optimalv
differs from the result of the simulation. Without changing
the parameter setting, we conducted a experiment using real
data to investigate aboutv. Internet advertisement dataset in
Table 1 was chosen as a real data with1, 558 variables. This
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Fig. 2: Simulation:Relationship betweenv andPs. Number
of variables:5, 000.

Fig. 3: Simulation:Relationship amongv, se andPs. Num-
ber of variables:1, 558.

experiment was conducted using rapid feature selection.
Figure 6 shows that the accuracy of this real data is

insensitive to the value ofv. It is difficult to predict the
optimalv. However, under the condition thatv is 5 or more,
we found that the behavior ofPs is stabilized ifse changes.
Figure 3 supports this empirical rule. Thus, we conducted
experiments by provisionally settingv = 5, as described in
the following chapter. Prediction ofv is one of the future
work.

Figure 4 expresses the relationship betweenntree and
Ps, and Figure 5 the relationship betweense andPs. These
Figures show a following relationship: The more the value
of ntree or se becomes large, the more the value ofPs

approaches1. Under the assumption thats is determined
beforehand, we consider that all parameters should be set to
satisfy the following condition:

mtry × s

M
× Ps(s, se)× ntree ≥ s.

It is expected that the maximization ofPs and minimization
of se andntree are realized simultaneously. When1.5s =
se,mtry × ntree/M = 2.5, Ps is about0.5 is considered
as one index.

Fig. 4: Simulation:Relationship betweenntree and Ps.
Number of variables:1, 558.

Fig. 5: Simulation:Relationship betweense andPs. Number
of variables:1, 558.

3. Experiment
First, we conducted experiments to verify the performance

of rapid feature selection compared with another well-known
method. For comparison, we chose principal component
analysis (PCA). PCA provides factor loading amount and
accumulated contribution rate for variable selection. By
using these values, we selected meaningful variables.

Next, to determine whether “mean decrease accuracy”
used as “wrapper” in our method works effectively, we
compared the performance of rapid feature selection and a
method that employs only “filter” in rapid feature selection.
In this paper, we refer to this method as “first split” (FS).
First split does not use the evaluation from mean decrease
accuracy. The first split algorithm is simple and its steps1)
to 3) are the same as those of the rapid feature selection
algorithm, except that there is no need to excludeOOB
data.

Because “mean decrease accuracy” consumes computa-
tion time, an alternative method is desired. To this end, we
introduce weighted sampling. Gender et al. suggested select-
ing randommtry inputs according to a distribution derived
from the preliminary ranking given by a pilot estimator [19].
Based on their concept, we propose another method for rapid
variable selection. In this paper, we call this method “first
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Fig. 6: Experiment:Relationship betweenv andaccuracy.
Dataset: Internet Advertisements.

split Gibbs” (FSG). After performing the first split algorithm,
first split Gibbs normalizes the score derived from step3)
of the first split algorithm. Then, let the normalized values
be Gi(i = 1, · · · ,M) and calculate the Gibbs distribution
by substitutingGi as a potential. The probability function
of the Gibbs distribution is defined as follows:

Pi =
exp(−βGi)∑M
i=1 exp(−βGi)

(β > 0).

To samplemtry variables according to the Gibbs distri-
bution, first split Gibbs repeats the first split algorithm
once again. Weighted samplings are performed by adjusting
the parameterβ. The original RF method samplesmtry
variables according to the uniform distribution. Substituting
β = 0 for the probability function of the Gibbs distribution,
the resulting distribution equals the uniform distribution.
When we substitute large values forβ, the probability that
the variables with largeGi are chosen increases.

Using high-dimensional data from UCI Machine Learning
Repository, we investigate computation time and quality
of variable selection, that is, whether important variables
are properly selected. After performing PCA and the three
methods, the accuracy of each is compared using only the
variables selected. The score at step3) of the rapid feature
selection algorithm is obtained by giving the1/r points to
the rth variable (r = 1, · · · , v).

As datasets for the experiment, we use an internet adver-
tisements dataset and the Gisette dataset. Readers can refer
to the details of these datasets at (http://archive.ics.uci.edu/
ml/data-sets/Internet+Advertisements, http://archive.ics.uci.
edu/ml/datasets/Gisette).

The experiment using internet advertisements results in
trees with several nodes. On the other hand, the experiment
using the Gisette dataset results in trees with many nodes.
For each dataset, Table 1 shows the number of samples and
variables and the accuracy calculated using all variables.

The computation environment is as follows: CPU Phenom
X4 9950, OS Windows7 Professional64bit, RAM 8GB.

Table 2: Comparison of computation time. (sec.)
Dataset FS FSG RFS RF PCA
Internet

Advertisements
8.39 16.21 9.22 272.46 38.50

Gisette 63.00 58.49 76.38 801.61 833.60

Fig. 7: Comparisonof accuracy calculated using selected
variables only. Method: RFS, PCA, FS and FSG. Dataset:
Internet Advertisements.

4. Results and discussion
Table 2 shows the computation time of each method.

The parameters used in this experiment are set as follows:
mtry = ⌊

√
M+0.5⌋, ntree = 200, v = 5, se = 20, s = 15.

First split Gibbs and rapid feature selection need two-stage
estimations. At each stage,ntree = 100 is set.

Computation time depends on the property of a dataset,
thus the ranking of first split, first split Gibbs, and rapid
feature selection varied slightly. However, the computation
time of the rapid feature selection method was always lower
than the original RF. From this result, rapid feature selection
was found to be a much faster method than the original RF
method.

The results of the accuracy calculated using selected
variables only are plotted in Figures 7, 8 and 9. We can
compare rapid feature selection, PCA, first split and first split
Gibbs from these figures. In this experiment, the accuracy in
Table 1 is used as the evaluation criterion regarding whether
the information for classification is maintained. The result
showed that rapid feature selection can maintain accuracy
even if the number of dimensions becomes high.

The parameters used in this experiment are set as follows:
mtry = ⌊

√
M + 0.5⌋, ntree = 200, v = 5, β = 100

,s = 10 − 20, se = 25 − 35 for the internet advertisements
dataset andmtry = ⌊

√
M + 0.5⌋, ntree = 200, v = 5,

β = 100 ,s = 45− 55, se = 60− 70 for the Gisette dataset.
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Fig. 8: Comparisonof accuracy calculated using selected
variables only. Method: RFS and PCA. Dataset: Gisette.

Fig. 9: Comparisonof accuracy calculated using selected
variables only. Method: RFS, FS and FSG. Dataset: Gisette.

Rapid feature selection needs two-stage estimations. At each
stage,ntree = 100 is set.

From the results, we found that rapid feature selection
can select important variables more accurately than first split
and first split Gibbs. In addition, we found that trees with
many nodes do not affect the results. Even if we reduced the
number of variables to0.6% for the internet advertisements
dataset and0.92% for the Gisette dataset, the accuracy did
not fall below the evaluation criterion. These results indicate
that rapid feature selection maintains the information for
discrimination after variable selection.

The ranking of variables selected by each method are illus-
trated in Table 3. The results of the internet advertisements

dataset are used for this experiment. The parameters used in
this experiment are set as follows:mtry = ⌊

√
M + 0.5⌋,

ntree = 200, v = 5, β = 100, se = 34, s = 19.
In the table, the values under the three methods represent

the ID number of the variables. In this case, the ID number is
up to1, 558. Both rapid feature selection and first split select
almost the same variables because rapid feature selection
is based on first split. Here, about11% of the variables
are replaced, and the accuracy increased as a result of this
change. Because “mean decrease accuracy” is introduced in
step5) of the rapid feature selection algorithm, the accuracy
of rapid feature selection is higher than that of first split.
Therefore, the effectiveness of the “wrapper” method was
verified through this experiment.

First split Gibbs is also based on first split and about
37% of variables are replaced by weighted samplings. In this
case, the estimation by samplingmtry variables according
to the Gibbs distribution was successful and accuracy was
improved.

However, owing to the nature of the data, first split itself
can correctly select important variables. In contrast, first
split Gibbs reduces accuracy rate in such a situation. This
phenomenon can be observed in Figure 9. Adjusting the
value ofβ is difficult, thus first split Gibbs has a problem
of time to adjust the value ofβ. However, first split Gibbs
is a promising method as an alternative method of “mean
decrease accuracy,” if adjustment ofβ can be performed
well.

Our study showed that rapid feature selection performs
faster than the original RF method and can correctly select
important variables even if trees with many nodes are gen-
erated. Rapid feature selection cannot search the minimum
subset of significant variables for discrimination. However,
under the conditions that the number of variables to be
selected is predefined, rapid feature selection is useful to
rapidly search essential variables.

5. Conclusion
In this paper, we proposed the rapid feature selection

method based on an empirical rule: the rankings of impor-
tant variables obtained from “Gini importance” and “mean
decrease accuracy” differ slightly, whereas the members of
the top ranked variables in RF are almost the same. If
this empirical rule is solved mathematically, the reason our
method is successful becomes clear.

The rapid feature selection method involves a two-step
estimation. As the first step, candidates for important vari-
ables are chosen by a type of “filter.” At this stage, variable
importance is evaluated on the basis of “Gini importance.” In
the second stage, we select important variables by “wrapper.”
“Mean decrease accuracy” is adopted as the measure of
variable importance. We calculate “mean decrease accuracy”
using only variables chosen in the first stage. This is the rea-
son rapid feature selection can maintain speed and accuracy.

6ⓒ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2012-MPS-89 No.3
2012/7/16



Table 3:Illustration of variables selected by each method
Ranking FS FSG RFS PCA

1 3 3 352 2
2 1,425 1,154 1,400 1
3 1 2 1,484 3
4 2 352 3 1,244
5 969 1 1,425 1,484
6 1,154 1,400 1 1,456
7 1,423 1,484 2 1,436
8 1,199 969 1,154 352
9 1,556 1,119 1,423 1,400
10 1,255 347 1,199 1,279
11 1,119 458 1,556 549
12 1,345 896 1,255 918
13 1,400 994 1,119 360
14 1,484 1,048 1,345 541
15 1,214 1,109 1,555 557
16 1,555 1,199 1,048 337
17 352 1,225 1,109 915
18 1,048 1,230 1,144 173
19 1,109 1,424 820 1,363

Accuracy 0.973 0.982 0.979 0.973

The experimental results for computation time demon-
strated that rapid feature selection is significantly faster
than the original RF method. Although computation time
depends on the nature of the data and the number of variables
expected to be selected, it is certain that rapid feature
selection selects important variables much faster than the
original RF method when dealing with high-dimensional
data.

Rapid feature selection was also found to be able to
select important variables and maintain the information for
classification. In the experiment, although the number of
variables was reduced to about0.8% and only 200 weak
learners were used, rapid feature selection preserved a high
degree of accuracy. These results show that our proposed
method performance is sufficient for rapid variable selection.

By using rapid feature selection for various types of high-
dimensional data, a means to improve the score generated
at step 3) of the rapid feature selection algorithm may
be found. Computation time may be further reduced by
the combination of improved first split Gibbs and rapid
feature selection. Moreover, it is necessary to not only
collect empirical rules but also mathematical proof for the
development of rapid feature selection.
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