
IPSJ Transactions on Programming Vol.5 No.1 1–8 (Mar. 2012)

Regular Paper

Improvements of Recovery from Marking Stack Overflow
in Mark Sweep Garbage Collection

Tomoharu Ugawa1,a) Hideya Iwasaki1 Taiichi Yuasa2

Received: June 29, 2011, Accepted: November 8, 2011

Abstract: Mark sweep garbage collection (GC) is usually implemented using a mark stack for a depth first search that
marks all objects reachable from the root set. However, the required size of the mark stack depends on the application,
and its upper bound is proportional to the size of the heap. It is not acceptable in most systems to reserve memory
for such a large mark stack. To avoid unacceptable memory overhead, some systems limit the size of the mark stack.
If the mark stack overflows, the system scans the entire heap to find objects that could not be pushed due to overflow
and traverses their children. Since the scanning takes a long time, this technique is inefficient for applications that are
likely to cause overflows. In this research, we propose a technique to record rough locations of objects that failed to
be pushed so that they can be found without scanning the entire heap. We use a technique similar to the card table of
mostly concurrent GC to record rough locations.

Keywords: garbage collection, embedded system, Android

1. Introduction

Mark sweep garbage collection (GC) follows pointer links
from the root set and marks reachable objects. This traversal is
usually implemented using a stack, which is called a mark stack.
Traversing all the reachable objects may possibly require a very
deep mark stack, depending on the data structures used by the
application. Although GC should cope with any application, ap-
plications requiring deep mark stacks are rare. It is therefore un-
realistic to reserve a large mark stack area to accommodate these
extreme cases.

Our research goal is to improve GC on Dalvik virtual machine
(VM), which is a Java VM used in the Android smart phone plat-
form. Dalvik VM performs concurrent mark sweep GC to pre-
vent the application from pausing for long periods while GC is
in progress, thereby providing smart phone users with a comfort-
able operating experience. The current version of Dalvik VM *1

depends on Linux demand paging. Every time GC is performed,
it uses mmap to reserve a mark stack of a safe size calculated from
the size of the heap in use, but only part of the reserved space that
is actually needed for marking is used. However, Android has
recently been put to use not only in smart phones but also in em-
bedded devices that may not have much spare physical memory.
It is therefore desirable to limit the size of the mark stack.

Mark sweep GC that uses a small fixed-size mark stack have
been studied for a long time now [1]. Many systems deal with
mark stack overflows as follows. When the mark stack is full,
they mark traversed objects but leave them unpushed. Then, at

1 Graduate School of Informatics and Engineering, The University of
Electro-Communications, Chofu, Tokyo 182–8585, Japan

2 Graduate School of Informatics, Kyoto University, Kyoto 606–8501,
Japan

a) ugawa@cs.uec.ac.jp

a later stage, they follow pointer links again from all the objects
that have been marked. However, it takes time to search the en-
tire heap for marked objects, and an object whose referents have
all been marked still has to be checked to see whether or not it
has any pointers to unmarked objects, resulting in a large over-
head when the mark stack has overflowed. Pointer reversal [1] is
a technique that traverses objects without using a mark stack at
all. Instead, it follows pointer links while reversing the direction
of the pointers so that it can backtrack using the reversed point-
ers. However, in concurrent GC, mutators may read the reversed
pointers while GC is still in progress, so the technique cannot be
used. Furthermore, using this technique is slower than using a
mark stack.

In this paper, we propose a method whereby marking can be
performed correctly with little overhead when the mark stack has
overflowed, in a processing system that performs mark sweep GC
using a small fixed-length mark stack. In this method, we store
the rough locations of objects that were left unpushed when the
mark stack overflowed. In this way, we can find these unpushed
objects in the mark stack without scanning the entire heap.

Dalvik VM uses mostly concurrent GC [2] to perform GC in
parallel with mutators. In mostly concurrent GC, a write barrier
acts when a mutator writes to an object so that the objects reach-
able from this object can be marked when GC scans this object
again. In this case, instead of individually recording the objects
that are written to, the heap is partitioned into small fixed-size
chunks called “cards,” and card marking is used to record whether
or not a write has been performed in each card. When a card has
been written to, a virtual dirty bit corresponding to the card is set.
In a GC mechanism configured like this, we can efficiently im-

*1 As of June 29, 2011, the source code of Android 2.3.4 is publicly avail-
able.

c© 2012 Information Processing Society of Japan 1



IPSJ Transactions on Programming Vol.5 No.1 1–8 (Mar. 2012)

plement our proposed method by “piggy-backing” it on the dirty
bits. That is, when the mark stack has overflowed, the dirty bits
are set for cards in which unpushed objects reside. By doing so,
it is then only necessary to retrace the links of marked objects in
cards where the dirty bit is set, instead of having to work through
the entire heap.

In Section 2 of this paper, we introduce the existing research
that has been done to address mark stack overflows. In Section 3,
we discuss our method for dealing with mark stack overflows, and
in Section 4, we present a detailed discussion of how this method
was implemented in Dalvik. The results of performance evalua-
tions are shown in Section 5, and in Section 6 we conclude with
a summary.

2. Background

2.1 Mark Stack Overflow
Mark sweep GC marks objects that can still be referenced by

a mutator, and subsequently the memory occupied by unmarked
objects is reclaimed by scanning the entire heap. These phases
are called the “mark phase” and the “sweep phase,” respectively.

In the mark phase, GC marks live objects, i.e., those of objects
that are directly or indirectly referenced from the areas that mu-
tators can reference directly, such as stacks and global variables
(called the “root set”). To find the live objects, the pointer links
are followed while applying marks, using the root set as a start-
ing point. At this time, the mark stack is generally used to follow
links recursively.

In Fig. 1, markPhase is the pseudocode of the mark phase. To
simplify the discussion, the examples in this paper assume that all
the objects consist of two pointer fields. First, rootInsertion
marks objects that are directly referenced from the root set and
pushes them onto the mark stack. This process is called root
insertion. Next, object P is popped from the mark stack, and
scanObject scans P to search its referent objects. If object
P’s referents P[0] and P[1] are unmarked, they are marked and
pushed onto the mark stack. This process is repeated until the
mark stack becomes empty.

The size of the mark stack required for this process depends
on the data structures used by the application. For example, if
the application uses an array of objects, then all of these ob-
jects will be pushed onto the mark stack simultaneously. Ta-
ble 1 shows the results of an investigation into the actual sizes
of mark stacks required by various applications. Here, sys-
tem server is an Android daemon process, kXML is a pro-

rootInsertion() {
foreach(P in RootSet) {
P.markbit = MARKED;
markStack.push(P); }}

scanObject(P) {
for (i = 0; i < 2; i++) {
if (P[i].markbit != MARKED) {
P[i].markbit = MARKED;
markStack.push(P[i]); }}}

markPhase() {
rootInsertion();
while (!markStack.isEmpty()) {
P = markStack.pop();
scanObject(P); }}

Fig. 1 Mark phase.

gram that uses a lightweight XML parser library called kXML
to read the DOM tree from an XML file that stores the An-
droid settings, and Hashtable is an artificial program that uses
java.util.Hashtable to record 100,000 Integer objects in a
hash table. To give an indication of the scale of these applica-
tions, Table 1 also shows the total amount of memory occupied
by live objects when GC has finished. From this table, it can be
seen that the required size of the mark stack varies among appli-
cations, and in devices with strict memory constraints there may
be cases where this memory requirement is too large to ignore.

Although GC must be able to cope with whatever data struc-
tures are used in an application, applications that require deep
mark stacks are rare in practice. Therefore, it is impractical to
prepare a large mark stack based on a worst-case scenario. Thus,
most systems use a small fixed-size mark stack to follow pointer
links.

With a small fixed-size stack, some applications may cause the
mark stack to overflow. Figure 2 (a) shows a mark stack before
and after an overflow. The mark stack area is completely used up,
and a pointer to object A resides on top. When object A is popped
off the stack and then an attempt is made to push objects B and
C which are referents of object A, object B can be pushed but ob-
ject C cannot, as shown in Fig. 2 (b). Here, the object that could
not be pushed is indicated by a bold outline. Unless something
is done, object D (which can only be reached through object C)
is left unmarked, and is erroneously collected despite still being
live.

A method commonly used to prevent this sort of erroneous col-
lection involves marking traversed objects but leaving them un-
pushed when the mark stack is full, and after a simple traversal
has been completed, performing a recovery process whereby all
the marked objects are used as a root set to retrace the pointer
links [3], [4]. Since the mark stack is also liable to overflow dur-
ing the recovery process, the recovery process is repeated un-
til it completes without mark stack overflows. In this method,
since the recovery process takes time to perform, a large over-
head penalty is incurred when the mark stack overflows.

Figure 3 shows the pseudocode for the mark phase using a

Table 1 Size of mark stack used for GC.
Application Mark Stack (KB) Live Objects (KB) A/B (%)

1 system server 40.4 4,030 1.0
2 kXML 3.0 268 1.1
3 Hashtable 399.1 5,905 6.8

(a) Before an Overflow.

(b) After an Overflow.

Fig. 2 Mark stack overflow.

c© 2012 Information Processing Society of Japan 2



IPSJ Transactions on Programming Vol.5 No.1 1–8 (Mar. 2012)

small fixed-size mark stack. The occurrence of a mark stack over-
flow is stored in overflowFlag. Once the simple traversal has
been completed, recovery is called to perform the recovery pro-
cess if a mark stack overflow has occurred. The recovery proce-
dure examines the heap in order of addresses to look for marked
objects. In the example of this paper, since all the objects are as-
sumed to consist of two pointer fields, the object size is also fixed
(OBJECT SIZE). It is also assumed that there are no mark bits set
in unused regions. When a marked object is found, this object is
scanned, and its unmarked referent objects are pushed onto the
mark stack. After examining the entire heap, objects reachable
from the objects pushed onto the mark stack are marked.

2.2 Related Work
Using a small fixed-size mark stack, many systems perform

a recovery process according to the method discussed in Sec-
tion 2.1 when the mark stack overflows [3], [4]. Knuth [5] men-
tions a method where, when using a small fixed-size mark stack,
the mark stack is overwritten from the bottom up if the mark stack
overflows. A recovery process is still required in this case.

The pointer reversal method [6] reverses the direction of point-
ers as they are followed, and uses these reversed pointers to back-
track. If the pointer reversal method is used, then there is no need
for a mark stack, but the pointers within objects are temporarily
rewritten. As a result, this method cannot be used for GC that
runs concurrently with mutators. Also, since the pointer reversal
method is slower than methods that use a mark stack, it is also not
an option in cases where performance is required even in systems
that do not perform concurrent GC.

There are also several other known methods that reduce the
possibility of a mark stack overflow by reducing the number of
objects pushed onto the mark stack. In one method for exam-
ple, large arrays are handled virtually as lists of smaller arrays,
thereby preventing a large number of objects from being pushed
onto the mark stack simultaneously [4].

In environments where memory can be obtained from an un-
derlying system such as an operating system, the mark stack can

scanObject(P) {
for (i = 0; i < 2; i++) {
if (P[i].markbit != MARKED) {
P[i].markbit = MARKED;
if (!markStack.isFull()) {
markStack.push(P[i]); }

else {
overflowFlag = true; }}}}

markPhase() {
overflowFlag = false;
rootInsertion();
while (!markStack.isEmpty()) {
P = markStack.pop();
scanObject(P); }}

while (overflowFlag) {
recovery(); }}

recovery() {
overflowFlag = false;
for (P = heap.start; P < heap.end; P += OBJECT_SIZE) {
if (P.markbit == MARKED) {
scanObject(P); }}

while (!markStack.isEmpty()) {
P = markStack.pop();
scanObject(); }}

Fig. 3 Mark phase using a small mark stack.

be split into chunks so that if the mark stack overflows then a new
chunk can be topped up in its place [4], [7].

3. Recovery from Mark Stack Overflow by Us-
ing a Card Table

In this paper, we propose a method that is compatible with card
marking used in mostly concurrent GC, and reduces the recovery
processing overhead.

3.1 Mostly Concurrent GC
Mostly concurrent GC [2] is a concurrent GC based on incre-

mental updates. In GC with incremental updates, a write barrier
is used to detect objects that have been written to by a mutator
during GC, and these objects are used as the starting points from
which the pointer links are retraced. In mostly concurrent GC,
instead of individually recording every object that is written, card
marking [8] is used to keep records in units of a fixed-size area,
and the objects that can be reached from written objects are all
marked together after pausing all mutators.

Card marking is a method where the dirty bits of pages used
in virtual memory are implemented in software. In card mark-
ing, the heap is virtually partitioned into fixed-size areas (called
“cards”), and a dirty bit is provided for each card. The dirty bits
are stored in a bit map called a “card table” that exists outside of
the heap. When a pointer is written to an object, a write barrier
sets the dirty bit of the card in which the object resides. This indi-
cates that there is an object in this card from which pointer links
need to be followed again.
markPhase in Fig. 4 is pseudocode for the mark phase of

mostly concurrent GC. In Fig. 4, the code for stopping and re-
suming the mutators is omitted. The definition of scanObject
is the same as in Fig. 1. The GC cycle of mostly concurrent GC
consists of the following phases. (Mark stack overflows are not
considered, since our main purpose here is to provide a general
outline of mostly concurrent GC.)
Root insertion phase: When a GC cycle starts, all the mutators

are stopped and root insertion is performed.
Concurrent mark phase: GC allows the mutator threads to re-

sume. The GC thread recursively follows pointer links from
objects pushed onto the mark stack, and marks all the ob-
jects it reaches. When a mutator writes to a pointer during

markPhase() {
rootInsertion();
// concurrent mark phase
while (!markStack.isEmpty()) {
P = markStack.pop();
scanObject(P); }

// stop-the-world mark phase
cardCleaning(); }

cardCleaning() {
rootInsertion();
for (i = 0; i < cardTable.length; i++) {
card = cardTable[i];
if (card.dirtybit == DIRTY) {
for (P = card.start; P < card.end; P += OBJECT_SIZE) {
if (!isFree(P) && P.markbit == MARKED) {
scanObject(P); }}}}

while (!markStack.isEmpty()) {
P = markStack.pop();
scanObject(); }}

Fig. 4 Mostly concurrent GC.

c© 2012 Information Processing Society of Japan 3



IPSJ Transactions on Programming Vol.5 No.1 1–8 (Mar. 2012)

(a) Before an Overflow.

(b) After an Overflow.

Fig. 5 Recovery from an mark stack overflow using card table.

this process, the dirty bit is set.
Stop-the-world mark phase: When the mark stack becomes

empty, all the mutators are stopped. At this point, there may
be live objects that have yet to be marked since mutators may
have written pointers into objects and/or the root set. Conse-
quently, the pointer links are retraced starting from the root
set and all the objects that reside in cards whose dirty bit is
set. This process is called card cleaning. Card cleaning is
performed by cardCleaning in Fig. 4.

Concurrent sweep phase: GC allows the mutators to resume
and reclaims garbage concurrently with the mutators.

3.2 Basic Idea
The recovery process indicated by recovery in Fig. 3 has poor

efficiency because of the following points:
• The entire heap must be examined to find marked objects.
• It scans all the marked objects and searches for unmarked

referents of these objects.
We propose a method that reduces the recovery process overheads
by “piggy-backing” on card marking of mostly concurrent GC.
The basic idea of this method is as follows.

Since it is possible that objects that could not be pushed onto
the mark stack may have referent objects that have not yet been
marked, it will subsequently be necessary to mark the objects
that can be reached from these objects. The need to subsequently
mark objects that can be reached from these objects is common to
all objects that are written to by mutators during GC, and can thus
be handled in the same way. That is, if the mark stack overflows
during the concurrent mark phase, the dirty bits are set for cards
containing objects that could not be pushed onto the mark stack.
In this way, in card cleaning with the stop-the-world mark phase,
objects that can be reached from objects that could not be pushed
onto the mark stack are also marked.

Figure 5 (a) shows the mark stack just before an overflow oc-
curs. Here, object C is popped from the stack and an attempt is
made to push objects E and F, which are referents of object C,
onto the mark stack. Since there is only one word of space on the

mark stack, E can be pushed onto the stack but F cannot. Thus, as
shown in Fig. 5 (b), the dirty bit of card No.2 in which F resides
is set.

It is possible that the mark stack may overflow even in the stop-
the-world mark phase since GC uses the mark stack to follow
pointer links in this phase as well. The stop-the-world mark phase
must therefore be modified as follows.
• To enable the recording of mark stack overflows during card

cleaning, for each dirty card, the dirty bit is reset immedi-
ately before searching for marked objects in this card.

• Card cleaning is repeated until there are no more dirty cards.

3.3 Variations
Several variations can be considered in the method of Sec-

tion 3.2, and it is not obvious which variation is better. In this
section we show two variations, and in Section 5 we evaluate their
performance.
3.3.1 Push Suppression

Marked objects that reside in dirty cards are scanned at the next
card cleaning operation. In the method mentioned in Section 3.2,
objects are pushed onto the mark stack regardless of which cards
they reside in, and are subsequently scanned. Objects that re-
side in dirty cards are therefore scanned twice, since they are also
scanned in the next card cleaning. To prevent this, the objects are
first checked to see if they reside in dirty cards, and if so, they
are not pushed onto the mark stack. This not only prevents the
same object from being scanned twice, but can also reduce the
frequency of mark stack overflows.

Barabash et al. [9] have proposed a method where, in order to
prevent double scanning of objects in dirty cards in mostly con-
current GC, objects popped from the mark stack are checked to
see if they reside in a dirty card before they are scanned. In con-
trast, the method proposed in this section checks whether or not
an object resides in a dirty card before it is pushed onto the mark
stack.
3.3.2 Clearing the Mark Stack

When the mark stack has overflowed, the card in which the ob-

c© 2012 Information Processing Society of Japan 4



IPSJ Transactions on Programming Vol.5 No.1 1–8 (Mar. 2012)

Fig. 6 Clearing mark stack.

ject that could not be pushed onto the mark stack resides becomes
dirty, and is targeted by subsequent card cleaning operations. At
this time, if other objects in the same card have already been
pushed onto the mark stack, then these will be scanned twice.

This could be prevented by scanning the entire mark stack
when a mark stack overflow has occurred, and removing from the
mark stack all the objects that reside in the dirty card. However,
when only a few objects are removed from the mark stack by this
operation, the mark stack will most likely overflow again. Conse-
quently, scanning the entire mark stack when the mark stack has
overflowed has a large overhead.

One might therefore consider a method where all objects are
removed from the mark stack, including objects placed in cards
whose dirty bit is not set. This can reduce the frequency of mark
stack overflows. In order to ensure that all reachable objects are
eventually marked, it is necessary to set the dirty bit of all cards
containing objects that have been on the mark stack. It is not
obvious whether or not the benefit of avoiding double scanning
outweighs the overhead penalty of making more cards dirty.

For example, in the situation shown in Fig. 5 (a), when an over-
flow is caused by attempting to push referent objects E and F of
object C onto the mark stack, dirty bits are set not only in card
2, but also in card 0 which is the card of object B that has been
pushed onto the mark stack, and B is removed from the mark
stack, as shown in Fig. 6. Other objects pushed onto the mark
stack are also removed in the same way, thereby clearing the mark
stack.

4. Implementation

We implemented the method proposed in Section 3 in Dalvik
VM. In Dalvik VM, the card size of mostly concurrent GC is
128 bytes. The original mostly concurrent GC proposed by Print-
ezis et al. [2] is configured as a generational GC, but generational
GC is not performed in Dalvik VM, which only incorporates con-
current marks using card marking.

Dalvik VM uses two bitmaps called live bits and mark bits to
manage the positions and marks of objects. Since objects are
aligned at 8-byte boundaries in Dalvik VM, every eight bytes on
the heap correspond to 1 bit in these bitmaps. At the start ad-
dress of each live object, the corresponding bit in live bits is set.
Live bits enables GC to find the start address of an object in a
card, which is a part of the heap, without scanning from the start
address of the heap.

The mark bits bitmap consists of the marks for objects at the
corresponding addresses. Because marks are collected together
in this bitmap, GC can quickly search the entire heap for marked

cardCleaning() {
rootInsertion();
for (i = 0; i < cardTable.length; i++) {
card = cardTable[i];
if (card.dirtybit == DIRTY) {
for (P = card.start; P < card.end; P += OBJECT_SIZE) {
if (!isFree(P) && P.markbit == MARKED) {
scanObject(P);
while (!markStack.isEmpty()) {
P = markStack.pop();
scanObject(); }}}}}}

Fig. 7 Modified card cleaning procedure.

objects.
We allocated fixed-size areas ranging from a few kilobytes to

hundreds of kilobytes to the mark stack used by Dalvik VM,
and we handled mark stack overflows by piggy-backing the card
marking technique as shown in Section 3.2. We also implemented
the two variations mentioned in Section 3.3.

Like cardCleaning in Fig. 4, the Dalvik VM card cleaning
pushes the referents of all the marked objects onto the mark stack,
and then uses the objects pushed onto the mark stack as a starting
point for the recursive tracing of pointer links. Therefore, mark
stack overflows can easily occur. It seems that this configuration
was chosen because the mark stack was regarded as being suf-
ficiently large. Since the size of the mark stack was limited in
our implementation, we modified the procedure for card clean-
ing so that every time a marked object is scanned, objects reach-
able from the referents of this object are immediately traversed.
Pseudocode for the modified card cleaning procedure is shown in
Fig. 7. A similar change was made to the root insertion.

5. Performance Evaluation

We evaluated the performance of the implementation discussed
in Section 4. For comparison, we also implemented GC based on
a recovery process that searches for marked objects from the en-
tire heap as shown in Fig. 3 without using a card table.

In the experiments, we used an Armadillo-500 FX ARM eval-
uation board. The experimental environment was as follows:

Android: 2.3.3 (Gingerbread)
GCC: 4.3.3 ARM EABI
Optimization: Android SDK standard options

(optimized for binary size)
CPU: Freescale i.MX31 (ARM1136JF-S)

532 MHz
Main Memory: 128 MB DDR SDRAM

For the benchmark program, we used SPECjbb2005. Since
some methods of class libraries of Dalvik VM have not been
properly implemented, we modified SPECjbb2005 so as not to
use any problematic methods. In the experiments, the warehouse

c© 2012 Information Processing Society of Japan 5



IPSJ Transactions on Programming Vol.5 No.1 1–8 (Mar. 2012)

Fig. 8 Improvements by using card table.

parameter of SPECjbb2005 was fixed at 1.
The heap size was fixed at 64 MB *2. Since the card size

of Dalvik VM is 128 bytes, the entire heap is partitioned into
roughly 512,000 cards. Armadillo-500 FX is equipped with
128 MB of main memory, which is large enough for the heap of
64 MB. Also, since since the value of warehouse was fixed at 1,
the heap usage was kept between 40% and 45%.

5.1 Throughput
Figure 8 shows the benchmark results for VM where the re-

covery process is performed by scanning only dirty cards (la-
beled “CARD”), and for VM where the recovery process scans
the entire heap (labeled “SCAN ALL”). The vertical axis shows
the SPECjbb2005 score (the greater the better). The score for
original VM, where a mark stack large enough not to overflow
was secured with mmap, was 43.7. When using a 128 KB mark
stack at the right-hand side of the graph, there were no mark stack
overflows with either VM.

In Fig. 8, it can be seen that when using a card table so that the
recovery process is only applied to dirty cards, there is hardly any
reduction in throughput for smaller mark stacks. For example,
when using a 4 KB mark stack, the SCAN ALL scheme suffered
a 22% drop in throughput compared with the original VM with no
mark stack overflows, while the throughput of the CARD scheme
decreased only by 6%. Also, when using a 128 KB mark stack
where no overflows occurred, the CARD scheme generated no
overhead, just like the SCAN ALL scheme.

If we take a detailed look at the situation with a mark stack size
of 4 KB, we can see that the mark stack overflowed twice per GC
cycle in both VM schemes. In the CARD scheme, the number
of cards marked as dirty was, on average, 39,644 per GC cycle.
Since the SCAN ALL scheme entails searching for marked ob-
jects from all the cards every time the mark stack overflows, it is
equivalent to checking roughly 1,024,000 cards in each GC cycle.
This difference appears to be reflected in the throughput figures.

*2 In Dalvik VM, only half the size specified by the “-Xms” option is allo-
cated to the heap at start-up. Hence, we specified both the initial heap
size and maximum heap size as 128 MB by using the options “-Xms
128M -Xmx 128M”. In the execution log, we confirmed the heap size
did not increased at runtime from the size of 64 MB allocated at start-
up.

Fig. 9 Throughput of variants.

Fig. 10 Number of dirty cards in variants.

5.2 Variations
Figure 9 shows the performance of the variations discussed in

Section 3.3. CARD+FILTER represents a VM where objects in
dirty cards are not pushed onto the mark stack as discussed in
Section 3.3.1, and CARD+CLEAR represents a VM where the
mark stack is cleared when the mark stack overflows as discussed
in Section 3.3.2. In the experimental results, the throughput of
both variations is inferior to that of the CARD scheme.

A comparison of CARD and CARD+FILTER shows that the
difference in throughput does not depend on the size of the mark
stack. CARD+FILTER even had lower throughput with a 128 KB
mark stack where no overflows occurred. This indicates that the
source of the overhead is the time taken to check the dirty bit of
the card in which an object resides when pushing the object onto
the mark stack.

Next, we consider the reasons why lower throughput was ob-
served with CARD+CLEAR. Except when using a 128 KB
mark stack where no overflows occurred, the drop in through-
put increased as the mark stack grew in size. Figure 10 shows
how many cards became dirty on average per GC cycle in each
variation. As this figure shows, increasing the mark stack size
causes hardly any reduction in the number of dirty cards in
CARD+CLEAR. In CARD+CLEAR, as the mark stack becomes
larger, more cards have their dirty bits set when the mark stack
overflows. Consequently, even though the mark stack becomes
larger, there is no reduction in the number of cards that become
dirty, and the throughput observed with a large mark stack is
worse than that of the CARD scheme.

c© 2012 Information Processing Society of Japan 6



IPSJ Transactions on Programming Vol.5 No.1 1–8 (Mar. 2012)

Fig. 11 Pause time and number of dirty cards.

5.3 Pause Time
In the proposed method, mark stack overflows are all dealt with

in the stop-the-world mark phase. Therefore, compared with the
original VM, where the proposed method is not used, it is possi-
ble that the stop-the-world mark phase may cause the pause time
of mutators to increase. Figure 11 shows the results of an inves-
tigation into pause times. In the SCAN ALL scheme, which does
not use a card table for the recovery process, the recovery process
is performed in the concurrent mark phase. Thus, the pause time
is not different from that of the original VM. On the other hand,
in the CARD scheme, card cleaning also involves the recovery
process. Consequently, the pause time increases in proportion to
the number of dirty cards. The pause time was very long with a
mark stack size of 4 KB because two card cleaning cycles were
required in this case.

Since concurrent GC is also sometimes used with the aim of
reducing the stoppage of mutators by GC, this increased pause
time is a problem. The method of Endo et al. [10] could be used
to resolve this problem. They provided a time restriction to the
stop-the-world mark phase to avoid stopping mutators for a long
time in the stop-the-world mark phase in mostly parallel GC [11]
(a method similar to mostly concurrent GC but with a hardware
paging mechanism used for the write barrier). When a time-out
occurs, mutators are allowed to resume even if pointers are still
being followed. In this way, the process reverts to the concurrent
mark phase. The concurrent mark phase and the stop-the-world
mark phase are repeated until the stop-the-world mark phase fin-
ishes without timing out. Implementing this method and evalua-
tion of its efficacy are issues for further study.

6. Conclusion

In this paper, we have proposed a low-overhead method for
dealing with mark stack overflows that are liable to occur when
the size of a mark stack is restricted. The proposed method is
piggy-backed on top of the card marking performed by mostly
concurrent GC, and sets the dirty bit of those cards in which ob-
jects that could not be pushed onto the mark stack reside, so that
it is only necessary to scan the objects in the vicinity of objects
that could not be pushed onto the stack.

We implemented this method in Dalvik VM and evaluated it.
As a result, when using a 4 KB mark stack under conditions where
a mark stack of at least 64 KB was needed to follow pointer

links without causing a mark stack overflow, a 22% reduction
in throughput is seen in the conventional method, but using the
proposed method the drop in throughput was only 6%. Accord-
ingly, the proposed method is effective for suppressing the drop
in throughput when the mark stack overflows.

On the other hand, since the recovery process that follows
a mark stack overflow is performed in the stop-the-world mark
phase, the pause time was longer. It should be possible to resolve
this issue by setting a time-out in the stop-the-world mark phase,
but the implementation and evaluation of this technique are left
as issues for further study.

Acknowledgments We would like to thank Carl Shapiro of
Google Inc. and Ryo Fujii of Keio University for showing us how
to modify the SPECjbb2005 benchmark software so it could run
on Dalvik VM. This study was supported by a Grant-in-Aid for
Scientific Research (22700026).

Reference

[1] Jones, R. and Lins, R.: Garbage Collection, John Wiley & Sons
(1996).

[2] Printezis, T. and Detlefs, D.: A generational mostly-concurrent
garbage collector, Proc. ISMM ’00, pp.143–154 (2000).

[3] Sun mycrosystems, Inc: The K Virtual Machine – White Paper (2000),
available from 〈http://java.sun.com/products/kvm/wp〉.

[4] Boehm, H.-J. and Weiser, M.: Garbage Collection in an Uncooperative
Environment, Software Practice & Experience, Vol.18, No.9, pp.807–
820 (1988).

[5] Knuth, D.E.: The art of computer programming: Fundamental algo-
rithms, p. 416, Addison-Wesley (1997).

[6] Schorr, H. and Waite, W.M.: An Efficient Machine-Independent Pro-
cedure for Garbage Collection in Various List Structures, Comm.
ACM, Vol.10, No.8, pp.501–506 (1967).

[7] Alpern, B. et al.: The Jalapeño virtual machine, IBM System Journal,
Vol.39, No.1, pp.211–238 (2000).

[8] Sobalvarro, P.G.: A Lifetime-based Garbage Collector for LISP Sys-
tems on General-Pourpose Computers, Technical report, MIT (1988).

[9] Barabash, K., Ossia, Y. and Petrank, E.: Mostly Concurrent Garbage
Collection Revisited, Proc. OOPSLA ’03, pp.255–268 (2003).

[10] Endo, T. and Taura, K.: Reducing Pause Time of Conservative Collec-
tors, Proc. ISMM ’02, pp.12–24 (2002).

[11] Boehm, H.-J.: Mostly Parallel Garbage Collection, Proc. PLDI ’91,
pp.157–164 (1991).

Tomoharu Ugawa received his B.Eng.
degree in 2000, M.Inf. degree in 2002,
and Dr.Inf. degree in 2005, all from Kyoto
University. He worked for a research
project on real-time Java at Kyoto Uni-
versity from 2005 to 2008. Since 2008,
he is an assistant professor at the Univer-
sity of Electro-Communications, Tokyo,

Japan. His research interests include program languages, lan-
guage processing systems, and system software.

c© 2012 Information Processing Society of Japan 7



IPSJ Transactions on Programming Vol.5 No.1 1–8 (Mar. 2012)

Hideya Iwasaki is a professor at the
Graduate School of Informatics and En-
gineering, the University of Electro-
Communications in Japan. He received
degrees of B.Eng. in 1985 and Dr.Eng. in
1988, both from the University of Tokyo.
After working as a research associate in
the Department of Mathematical Engi-

neering in the University of Tokyo, he joined the Educational
Computer Centre in the University of Tokyo as an associate pro-
fessor in 1993. He later served as an associate professor at Tokyo
University of Agriculture and Technology and the University of
Tokyo, he joined the University of Electro-Communications and
was appointed a professor in 2004. His research interests include
programming language and systems, and systems software.

Taiichi Yuasa received his B.Math. de-
gree in 1977, M.Math.Sc. degree in 1979,
and D.S. degree in 1987, all from Kyoto
University, Kyoto, Japan. He joined the
faculty of the Research Institute for Math-
ematical Sciences, Kyoto University, in
1982. He is currently a Professor at Grad-
uate School of Informatics, Kyoto Univer-

sity, Kyoto, Japan. His current area of interest include symbolic
computation and programming language systems. Dr. Yuasa is a
member of ACM, IEEE, IEICE, and Japan Society for Software
Science and Technology.

c© 2012 Information Processing Society of Japan 8


