IPSJ SIG Technical Report

Simple Memory Machine Models for GPUs

KoJ1 NAKANOT!

The main contribution of this paper is to introduce two parallel memory
machines, the Discrete Memory Machine (DMM) and the Unified Memory Ma-
chine (UMM). Unlike well studied theoretical parallel computational models
such as PRAMSs, these parallel memory machines are practical and capture the
essential feature of memory access of NVIDIA GPUs. As a first step of the
development of algorithmic techniques on the DMM and the UMM, we first
evaluated the computing time for the contiguous access and the stride access to
the memory on these models. We also present parallel algorithms to transpose
a two dimensional array on these models. Since the computing time of our
transposing algorithms on the DMM and the UMM is equal to the sum of the
lower bounds obtained from the memory bandwidth limitation and the latency
overhead, they are optimal from the theoretical point of view.

1. Introduction

1.1 Background

The research of parallel algorithms has a long history of more than 40 years.
Sequential algorithms have been developed mostly on the RAM (Random Access
Machine)®. In contrast, since there are a variety of connection methods and pat-
terns between processors and memories, many parallel computing models have
been presented and many parallel algorithmic techniques have been shown on
them. The most well-studied parallel computing model is the PRAM (Parallel
Random Access Machine)®-12) which consists of processors and a shared mem-
ory. Each processor on the PRAM can access any address of the shared memory
in a time unit. The PRAM is a good parallel computing model in the sense
that parallelism of each problem can be revealed by the performance of parallel
algorithms on the PRAM. However, since the PRAM requires a shared memory
that can be accessed by all processors in the same time, it is not feasible.

11 Hiroshima University

Vol.2012-AL-139 No.9
2012/3/14

The GPU (Graphical Processing Unit), is a specialized circuit designed to ac-
celerate computation for building and manipulating images” . Latest GPUs are
designed for general purpose computing and can perform computation in appli-
cations traditionally handled by the CPU. Hence, GPUs have recently attracted
the attention of many application developers™*?). NVIDIA provides a parallel
computing architecture called CUDA (Compute Unified Device Architecture)?,
the computing engine for NVIDIA GPUs. CUDA gives developers access to the
virtual instruction set and memory of the parallel computational elements in
NVIDIA GPUs. In many cases, GPUs are more efficient than multicore proces-
sors'® | since they have hundreds of processor cores.

CUDA uses two types of memories in the NVIDIA GPUs: the global mem-
ory and the shared memory?. The global memory is implemented as a off-chip
DRAM, and has large capacity, say, 1.5-4 Gbytes, but its access latency is very
long. The shared memory is an extremely fast on-chip memory with lower capac-
ity, say, 16-64 Kbytes. The efficient usage of the global memory and the shared
memory is a key for CUDA developers to accelerate applications using GPUs. In
particular, we need to consider the coalescing of the global memory access and
the bank conflict of the shared memory access?»'?. To maximize the band-
width between the GPU and the DRAM chips, the consecutive addresses of the
global memory must be accessed in the same time. Thus, threads should perform
coalesced access when they access to the global memory.

The address space of the shared memory is mapped into several physical mem-
ory banks. If two or more processor cores access to the same memory banks in
the same time, the access requests are processed sequentially. Hence to maxi-
mize the memory access performance, processor cores should access to distinct
memory banks to avoid the bank conflicts of the memory access.

1.2 Our Contribution: Introduction to the Discrete Memory Ma-

chine and the Unified Memory Machine

The first contribution of this paper is to introduce simple parallel memory
bank machine models that capture the essential features of the coalescing of the
global memory access and the bank conflict of the shared memory access. More
specifically, we present two models, the Discrete Memory Machine (DMM) and
the Unified Memory Machine (UMM), which reflect the essential features of the

© 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

shared memory and the global memory of NVIDIA GPUs.

The architectures of the DMM and the UMM are illustrated in Figure 1. In
both architectures, the processing elements (PEs) are connected to the memory
banks (MBs) through the memory management unit (MMU). A single address
space of the memory is mapped to the MBs in an interleaved way such that the
data of address 7 is stored in the (i mod w)-th bank, where w is the number
of MBs. The main difference of the two architectures is the connection of the
address line between the MMU and the MBs, which can transfer an address
value. In the DMM, the address lines connect the MBs and the MMU separately,
while a single address line from the MMU is connected to the MBs in the UMM.
Hence, in the UMM, the same address value is broadcast to every MB, and the
same address of the MBs can be accessed in each time unit. On the other hand,
different addresses of the MBs can be accessed in the DMM. Since the memory
access of the UMM is more restricted than that of the DMM, the UMM is less
powerful than the DMM.

data line

mwmmmnn - address line

DMM UMM
Fig.1 The architectures of the DMM and the UMM

The performance of algorithms of the PRAM is usually evaluated using two
parameters: the size n of the problem and the number p of processors. For
example, it is well known that the sum of n numbers can be computed in O(% +
log p) time on the PRAMY. We will use additional two parameters, the width w

Vol.2012-AL-139 No.9
2012/3/14

and the latency [of the memory when we evaluate the performance of algorithms
on the DMM and on the UMM. The width w is the number of memory banks
and the latency [is the number of time units to complete the memory access.
Hence the performance of algorithms on the DMM and the UMM is evaluated
as a function of n (the size of a problem), p (the number of processors), w (the
width of a memory), and [(the latency of a memory). In typical NVIDIA GPUs,
the width w of global and shared memory is 16 or 32. Also the latency [of the
global memory is 400-800 clock cycles.

We also introduce the bandwidth limited PRAM (BPRAM). In the BPRAM
of width w, any w processors out of the p processors can access to the memory
in a time unit. Clearly, the BPRAM is less powerful than the PRAM and is
more powerful than DMM and the UMM. Unlike the DMM and the UMM, the
BPRAM has no restriction of the addresses of memory access and 1 memory
access latency. We use the BPRAM to show the goodness of the performance of
algorithms on the DMM and the UMM. If the computing time of an algorithm
to solve some problem on the DMM or the UMM is almost the same as that on
the BPRAM, we can say that the algorithm on the DMM or the UMM is close
to optimal.

Please note that the DMM and the UMM are theoretical models of parallel
computation, that capture the essential feature of the global memory and the
shared memory of NVIDIA GPUs. NVIDIA GPUs have other features such as
hierarchical architecture grid/block/thread, and the cache of the global memory.
However, if these aspects are incorporated in our theoretical parallel models, they
will be complicated and need more parameters. The development of algorithms
on such complicated model may have too much non-essential and tedious opti-
mizations. Thus, we have introduces two simple parallel models, the DMM and
the UMM, which focuses on the memory accesses of the global memory and the
shared memory of NVIDIA GPUs.

In®, the authors have presented a GPU memory model and presented a cache-
efficient FFT. However, their model focuses on the cache mechanism and ignores
the coalescing and the bank conflict. Also, in'®), acceleration techniques for GPU
have been discussed. Although they are taking care of the limited bandwidth of
the global memory, the details of the memory architecture are not considered.

© 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

PE(0)PE(1)PE(2)PE(3)

{il] f—t—————

4 { i . s B e ot e e)
1p | 1 st

P 1p || 1b o3t)

v v \ 4 v

contiguous access stride access

Fig.2 The contiguous access and the stride access for p =4 and n = 16.

As far as we know, this paper is the first work that introduces simple theoretical
parallel computing models for GPUs. We believe that the development of algo-
rithms on these models are useful to investigate algorithmic techniques for the
GPUs.

1.3 Our Contribution: Fundamental Algorithms on the DMM and

the UMM

The second contribution of this paper is to evaluate the performance of two
memory access methods, the contiguous access and the stride access on the DMM
and the UMM. The reader should refer to Figure 2 for illustrating these two access
methods. We will show that the contiguous access of an array of size n can be
done in O(7+ + %l) time units on the DMM and the UMM. Also, the contiguous
access and the stride access can be done in O() time units on the BPRAM.
Thus, the contiguous access of the DMM and the UMM is optimal when wl < p,
because 7 > %l if this is the case. Further, we will show that the stride access of
the DMM can be done in O(;; - GCD(J, w) + %l) time units on the DMM, where
GCD(%, w) is the greatest common divisor of % and w. Hemnce, the stride access
of the DMM is optimal if % and w are co-prime and wl < p. The stride access
of the UMM can be done in O(min(n, - + + %’)) time units. Hence, the stride
access of the UMM needs an overhead of a factor of >

From the results of the second and the third contributions, we have one im-

Vol.2012-AL-139 No.9
2012/3/14

n

w

portant observation as follows. The factor 2 in the computing time comes from
the bandwidth limitation of the memory. It takes at least . time units to access
whole data in an array of size n from the memory bandwidth w. Also, the factor
%’ comes from the latency overhead. From the memory access latency [, each
processor cannot send next access request in [time units. It follows that, each
processor can access to the memory once in [time units and each of the [time
units can have expected % access requests by processors. Hence, %’ time units are

necessary to access all of the elements in an array of size n. Further, to hide the
nl
D
p of the processors must be no less than wl. We can confirm this fact from a

from the bandwidth limitation factor ;*, the number

latency overhead factor
different aspect. We can think that the memory access request are stored in a
pipeline buffer of size [for each memory bank. Since we have w memory banks,
we have wl pipeline registers to store memory access requests at all. Since at most
one memory request per processor are stored in the wl pipeline registers, wl < p
must be satisfied to fill the pipeline registers full of memory access requests.

2. Parallel Memory Machines: DMM and UMM

Let us start with defining PRAM (Parallel Random Access Machine), the most
popular shared memory parallel machine model. The PRAM consists of p proces-
sors and a shared memory. The shared memory is an array of memory cells, each
of which can store a word of data. Each of the processors can select a memory
cell in the array independently, and can perform read/write operation in a time
unit. Please see?) for the details of the PRAM.

We introduce a memory bandwidth limited PRAM. We assume that w memory
cells can be read /written in a time unit. If more than w memory cells are accessed,
the w operations are automatically serialized. More specifically, if p memory cells
are accessed, w read/write operations performed in each time unit. and it takes
[£7 time to complete the p read/write operations. We call such PRAM the
Bandwidth-limited PRAM (BPRAM).

We next introduce the Discrete Memory Machine (DMM) of width w and
latency 1. Let ml[i] (i > 0) denote a memory cell of address i in the memory.
Let B[j] = {m[jl, m[j + w],m[j + 2ul,m[j + 3ul,...} (0 < j < w — 1) denote
the j-th bank. Clearly, a memory cell m]i] is in the (i mod w)-th memory bank.

© 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

We assume that memory cells in different banks can be accessed in a time unit,
but no two memory cells in the same bank can be accessed in a time unit.
Also, we assume that [time units are necessary to complete an access request
and continuous requests are processed in a pipeline fashion through the memory
management unit. Thus, it takes k 4+ 1 — 1 time units to complete k continuous
access requests to a particular bank.

Blo] B[] B2 B3

0 1 2 3 0 1 2 3 |Al0]

4 5 6 7 4) 6 7 AN

8 9 10] 11 8 9 10 | 11 |A[2]

12 (113|114 || 15 12 | 13 | 14 | 15 |ABB]
[[[[|

memory banks of DMM address groups of UMM

Fig.3 Banks and address groups for w = 4

We assume that p processors are partitioned into £ groups of w proces-
sors called warps. More specifically,p processors are partitioned into ® warps
W(0), W(1),...W(E —1) such that W (i) = {PE(i-w), PE(i-w+1),...,PE((i +
)-w—=1)} (0 <4i< 2 —1). Warps are activated for memory access in turn,
and w processors in a warp try to access the memory in the same time. In other
words, W (0), W(1),..

least one processor in a warp requests memory access. If no processor in a warp

., W(w — 1) are activated in a round-robin manner if at

needs memory access, such warp is not activated and is skipped. When W (i) is
activated, w processor in W (i) sends memory access requests, one request per
processor, to the memory. We also assume that a processor cannot send a new
memory access request until the previous memory access request is completed.
Hence, if a processor send a memory access request, it must wait for / time units

Vol.2012-AL-139 No.9
2012/3/14

to send a next memory access request.

Let us evaluate the time for memory access using Figure 4 on the DMM for
p =38 w =4, and Il = 3. Suppose that processors in W (0) try to access
m[0], m[1],m[5], and m[10], and those in W (1) try to access m[8],m[9],m[14],
and m[15]. First, memory access requests to m[0], m[1], and m[10] are sent to
the banks B[0], B[1], B[2] first, and then access requests to m[5] are sent to the
bank B[1]. After that, memory access requests to m[8], m[9], m[14], m[15]. are
sent to the bank B[0], B[1], B[2], B[3]. Since we have latency ! = 3, all of these

memory requests are completed in 3+ — 1 = 5 time units on the DMM.

ook
jonE
8911

12 | 13 || 14 ||| 15

Fig.4 An example of memory access

We next define the Unified Memory Bank Machine (UMM for short) of width
w as follows. Let A[j] = {m[j-w],m[j-w+1],....,m[(j + 1) -w — 1]} denote the
j-th address group. We assume that memory cells in the same address group are
processed in the same time. However, if they are in the different groups, one time
unit is necessary for each of the groups. Also, similarly to the DMM, p processors
are partitioned into warps and each warp access to the memory in turn.

Again, let us evaluate the time for memory access using Figure 4 on the UMM
for p =8, w =4, and | = 3. To complete the memory access requests by W (0),

those to A[0] is performed for m[0] and m[1]. After that, access requests to A[1] is

© 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

performed for m[5] and then that to A[2] is performed for m[10]. Next, memory
access requests by W (1) are processed. First, memory access to A[2] is requested
for m[8] and m[9], and then that to A[3] is requested for m[14] and m[15]. Since
we have latency | = 3, all of these memory request are processedin 54+1—-1=17
time units on the UMM.

3. Sequential memory access operations

We begin with simple operations to evaluate the potentiality of the DMM
and the UMM. Let p and w be the number of processors and the width of the
machines. We assume that an array m of size n is arranged in the memory.
Let m[i] (0 < i < n — 1) denote the i-th word of the memory. We assume
that n > p > w. We consider two access operations to the memory such that
each of the p processors reads s = % memory cells out of the n memory cells.
Again, the readers should refer to Figure 2. In the contiguous access, the first p
memory cells are accessed by the p processors. Next, the second p memory cells
are accessed. In this way, all n memory cells are accessed in turn. In the stride
access, the memory is partitioned into p groups of % consecutive memory cells
each. A processor is assigned to each group and the assigned processor accesses
memory cells in the group sequentially. The contiguous access and the stride
access are written as follows.

[Contiguous Access]
fort < 0tos—1
for 7 <~ 0 to p — 1 do in parallel
PE(i) accesses to m[i + ¢ - p]
[Stride Access]
fort < 0tos—1
for i + 0 to p — 1 do in parallel
PE(i) accesses to m[i - s +]

In the contiguous access, w processors in each warp access memory cells in
different memory banks. Hence, the memory access by a warp takes [time unit.
Also, the memory access by a warp is processed in every 1 time unit. Since we
have £ warps, p memory cells can be accessed by p processors in £ 41 — 1 time

Vol.2012-AL-139 No.9
2012/3/14

units. Consequently, the contiguous access takes (£ +1—-1)-5s = O(; + %l) time

units on the DMM. In the contiguous access on the UMM, each warp access to
the memory cells in the same address group. Thus, the memory access by a warp
takes [time unit and the whole contiguous access runs in O(2 + %l)

The performance analysis of the stride access on the DMM is a bit complicated.
Let us start with a simple case: s = w. In this case, the p processors access to p
memory cells m[t], m[w+t], m[2w+t], ..., m[(p—1)w+t] foreach t (0 < ¢t < w—1).
Unfortunately, these memory cells are in the same memory bank B[t]. Hence,
memory access by a warp takes w + [— 1 time units and the memory access to
these p memory cells takes w - % +1l—1=p+1—1 time units. Thus, the stride
access when s = w takes at least (p+1-1)- 7 =0(n + %l) time units.

Next, let us consider general case. The w processors in the first warp access to
mlt],m[s + t],m[2s + t],...,m[(w — 1)s + ¢]. for each t (0 <t < w —1). These
w memory cells are allocated in the banks B[t mod w], B[(s +) mod w], B[(2s +

t) mod wl, ..., B[((w—1)s+1t) mod w]. Let L = LCM(s,w) and G = GCD(s, w)
be the Least Common Multiple and the Greatest Common Divisor of s and w,
respectively. From the basic number theory, it should be clear that ¢t mod w =
(£ -1
s+ t) mod w are distinct. Thus, the w memory cells are in the % = & banks
B[t mod w], B[(s + t) mod w], B[(25 + t) mod w],..., B[((& — 1)s + t) mod w]

(£ .5+ t) mod w, and the values of t mod w, (s + t) mod w, ...,

s

equally, and each bank has G memory cells of the w memory cells. Hence,
the w processor in a warp takes G + [— 1 time units for each ¢, and the p
processors takes G - £ 41 — 1 time units for each ¢. Therefore, the DMM takes
(G- 2+1-1)-s=0(2 4 %l) time to complete the stride access. If s = w then
G = w and the time for the stride access is O(n + %l) If s and w are co-prime,
G =1 and the stride access takes O(Z + %l) time units.

Finally, we will evaluate the computing time of the stride access on the UMM.
If s > w (i.e. n > pw), then the w memory cells are accessed by w processors in a
warp are in the different address group. Thus, w processors access to w memory
cells in w+1/—1 time units, and the stride access takes (w-£+1—1)-2 = O(n+ %l))
time. When s < w (i.e. n < pw), the w memory cells accessed by w processors

w—1)s+1
w

in a warp are in at most [(1 < s address groups. Hence, the stride access

© 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

Table 1 The running time for the contiguous access and the stride access
Operation PRAM | BPRAM DMM UMM
4 !
oG | oG | ot +5) oG+
n n n n M n n n
o(™) o(™) O(E-G'—F;) O(m]n(n,a-;)-kg)

P w
n =#data, p =#processors, w =memory bandwidth, G = GCD(%,w)

Contiguous Access
Stride Access

n
p

by p processors for each t takes at most s - % + 1 — 1 time, and thus, the whole
stride access takes (22 +1—1) - 2 =00+ %l) time. Consequently, the stride
access can be completed in O(min(n, %) + %l)) for all s = 7. Finally, we have,

Theorem 1 The contiguous access and the stride access on the PRAM, the

BPRAM, the DMM, and the UMM can be done in time units shown in Table 1.
4. Transpose of a two dimensional array

Suppose that two dimensional array a of size /n X /n is arranged in the
memory. We assume that a[i][j] (0 < i,j < y/n—1) is located in the (i-y/n+j)th
memory cell of the memory. The transpose of a two dimensional array is a task
to move a word of data stored in a[é][j] to a[j][i] for all (0 <i,j <+/n—1).

Let us start with a straightforward transpose algorithm using the contiguous
access and the stride access. The following algorithm transposes a two dimen-
sional array a size \/n X \/n.

[Straightforward transpose algorithm]
fort <~ 0 to 2 —1
for i + 0 to p — 1 do in parallel

j (t-p+i)/yn

k<« (t-p+i) mod /n

PE(i) performs exchange a[j][k] < a[k][]]
For each t, the processors performs the contiguous access and the stride access,
which takes O(1) time on the PRAM and O(£) time on the BPRAM. Hence, the
PRAM and the BPRAM can transpose a two dimensional array in O(3) time
units and O(-) time units, respectively.

Since the straightforward algorithm contains the stride access, it is not difficult
to see that the DMM and the UMM takes O(3 - GCD(y/n,w) + %l) time units

Vol.2012-AL-139 No.9
2012/3/14

and O(min(n, ;; - %) + %l) time units for transposing a two dimensional array,
respectively. On the DMM, GCD(y/n,w) = w if \/n is divisible by w. If this
is the case, the transpose takes O(n) time units the DMM. We will show that,
regardless of the value of n, the transpose can be done in O(2 + %l) time both
on the DMM and on the UMM.

We first show an efficient transposing algorithm on the DMM. The key idea is
to access the array in diagonal fashion. We use a two dimensional array b of size
n X n as a work space.

[Transpose by the diagonal access on the DMM]
for t < 0 to % —
for 7 <+~ 0 to p — 1 do in parallel

j (t-p+i)//n

k<« (t-p+i)mod/n

PE(i) performs b[j][k] < a[j][k]
for t < 0 to % -1

for i + 0 to p — 1 do in parallel

j (t-p+i)/yn

k<« (t-p+i) mod /n

PE(i) performs

al(j + k) mod /n][k] « b[k][(j + k) mod /n]

The readers should refer to Figure 5 for illustrating the indexes of processors
reading from memory cells in b and writing from memory cells in a forn = p = 16
and w = 4. From the figure, we can confirm that processors PE(j -4 + 0), PE(j -
4+ 1),PE(j -4+ 2),PE(j - 4 4+ 3) read from memory cells in diagonal location
of b and write to memory cells in diagonal location of a for every j (0 < j < 3).
Thus, reading and writing memory banks by w processors in a warp are different.
Hence p processors can copy p memory cells in £ + [time units and thus the
total computing time is (5 +1)- 7 = O(}; + %l) time. Therefore, we have,

Lemma 2 The transpose of a two dimensional array of size \/n x /n can be
done in O(7 + ";l) time using p processors on the DMM with memory width w
and latency I.

Next, we will show that the transpose of a two dimensional array can be also

© 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

PE(0) | PE(4) | PE(8) |PE(12) | | PE(0) |PE(13) |PE(10) | PE(T7)

PE(13) | PE(1) | PE(5) | PE(9) PE(4) | PE(1) |PE(14) |PE(11)

PE(10) [PE(14) | PE(2) | PE(6) PE(8) | PE(5) | PE(2) |PE(15)

PE(7) |PE(11) | PE(15) | PE(3) | [PE(12) | PE(9) | PE(6) | PE(3)

The indeices of processors reading The indeices of processors writing
from memory cells of b in memory cellsof a

Fig.5 'Transposing on the DMM

done in O(3 + %l) on the UMM if every processor has a local memory that

can store w words. As a preliminary step, we will show that the UMM can
transpose a two dimensional array of size w X w in O(w + [) time units using w
processors with each processor having a local storage of size w. We assume that
each processor has local memory that can store w words. Let l; denote the local
memory of PE(4), and [;[0],;[1],...l;[w — 1] can store a word of data.
[Transpose by the rotating technique on the UMM]
fort <~ 0tow—1
for i <~ 0 to w — 1 do in parallel
PE(i) performs I;[t] < a[t][(t + i) mod w]
fort < 0tow—1
for i « 0 to w — 1 do in parallel
PE(i) performs a[t][(t — i) mod w] < [;[(t —) mod w]

Let (i, j) denote the value stored in a[i][j] initially. The readers should refer to
Figure 5 for illustrating how these values are transposed.

Let us confirm that the algorithm above correctly transpose two dimensional
array a. In other words, we will show that, when the algorithm terminates,
ali][j] stores (j,i). It should be clear that, the value stored in I;[t] is (¢, (¢t +
i) mod w). Since ((¢ —4) mod w, t) is stored in 1;[(t — i) mod w], it is also stored

Vol.2012-AL-139 No.9
2012/3/14

in aft][(t — i) mod w] when the algorithm terminates. Thus, every a[i][j] (0 <
i, < w — 1) stores (j,4). This completes the proof of the correctness of our
transpose algorithm on the UMM.

Let us evaluate the computing time. In the reading operation [;[t] < a[t][(t +
i) mod w], w memory cells a[t][(t + 0 mod w)], a[t][(t + 1 mod w)], ..., a[t][(t +
w — 1 mod w)] are in the different memory banks. Also, in the writing operation
aft][(t—1) mod w] < l;[(t—17) mod w], w memory cells a[t][(t—0 mod w)], a[t][(t—
1 mod w)], ..., a[t][(t— (w—1) mod w)] are in the different memory banks. Thus,
each reading and writing operation can be done in [time units and this algorithm
runs in O(w +) time units.

The transpose of a larger two dimensional array of size /n x y/n can be done by
repeating the transpose of two dimensional array of size w x w. More specifically,
the two dimensional array is partitioned into \/Tﬁ X % subarrays of size w X w.
Let A[d][j] (0 <i,j < & — 1) denote the subarray of size w x w. First, each
subarray Al[i][j] are transposed independently using w processors. After that,
the corresponding words of A[i][j] and A[j][i] are swapped for all i and j in an
obvious way.

Let us evaluate the computing time to complete the transpose of a /n X /n
two dimensional array. Suppose that we have p (< %) processors and partition

»

the p processors into ;- groups with w processors each. We assign %/% =

n.
pw

D
subarrays to each group of w processors. The p processors can transpose .

subarrays in parallel in O(w - (2 41)) = O(p + wl) time units. This transpose of
£ subarrays are repeated -+ times, the total computing time for the subarray
w pw
transpose is piw -O(p+wl) = O(3 + %l) time units. Clearly, the swap operation
of subarrays can be also done in O(7" + %) time units. Thus we have,

Lemma 3 The transpose of a two dimensional array of size \/n x y/n can be
done in O(2 + ";l) time on the UMM with each processor having local memory

of w words.
5. Conclusion

In this paper, we have introduced two parallel memory machines, the Discrete
Memory Machine (DMM) and the Unified Memory Machine (UMM). We first

© 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

Vol.2012-AL-139 No.9

a Io I

(0,0) | (0,1) | (0,2) | (0,3) (0,0) | |(0,1)

(1,0) | (1,1) | (1,2) | (1,3) (1,1) | |(1,2)
—_

(2,0) | (2,1) | (2,2) | (2,3) (2,2) | |(2,3)

(3,0) | (3,1) | (3,2) | (3,3) (3,3) | |(3,0)

2012/3/14
lo I3 a
(0,2) | 1(0,3) (0,0) | (1,0) |(2,0) |(3,0)
(1,3) | |(1,0) (0,1) | (1,1) | (2,1) |(3,1)
b
(2,0) | |(2,1) (0,2) | (1,2) |(2,2) |(3,2)
(3,1)] 1(3,2) (0,3) | (1,3) |(2,3) |(3,3)

Fig.6 'Transposing on the UMM

evaluated the computing time of the contiguous access and the stride access of
the memory on the DMM and the UMM. We also presented an algorithm to
transpose a two dimensional array on the DMM and the UMM.

Although the DMM and the UMM are simple, they capture the characteristic
of the shared memory and the global memory of NVIDIA GPUs, Thus, these two
parallel computing models are promising for developing algorithmic techniques
for NVIDIA GPUs. As a future work, we plan to implement various parallel
algorithms developed for the PRAM so far on the DMM and on the UMM. Also,
NVIDIA GPUs have small shared memory and large global memory. Thus, it is
also interesting to consider a hybrid memory machine such that processors are
connected to a small memory of DMM and a large UMM.

References

1) NVIDIA CUDA C Best Practice Guide Version 8.1, 2010.

2) NVIDIA CUDA C Programming Guide Version 4.0, 2011.

3) AlfredV. Aho, Jeffrey D. Ullman, and John E. Hopcroft. Data Structures and
Algorithms. Addison Wesley, 1983.

4) A.Gibbons and W.Rytter. Efficient Parallel Algorithms. Cambridge University
Press, 1988.

5) NagaK Govindaraju, Scott Larsen, Jim Gray, and Dinesh Manocha. A memory
model for scientific algorithms on graphics processors. In Proc. of the ACM/IEEE

Conference on Supercomputing, pages 6 6, 2006.

6) Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta. Introduction
to Parallel Computing. Addison Wesley, 2003.

7) Wen-meiW. Hwu. GPU Computing Gems Emerald Edition. Morgan Kaufmann,
2011.

8) Yasuaki Tto, Kouhei Ogawa, and Koji Nakano. Fast ellipse detection algorithm
using hough transform on the GPU. In Proc. of International Conference on Net-
working and Computing, pages 313 319, Dec. 2011.

9) Duhu Man, Kenji Uda, Yasuaki Ito, and Koji Nakano. A GPU implementation
of computing euclidean distance map with efficient memory access. In Proc. of
International Conference on Networking and Computing, pages 68 76, Dec. 2011.

10) Duhu Man, Kenji Uda, Hironobu Ueyama, Yasuaki Ito, and Koji Nakano. Imple-
mentations of a parallel algorithm for computing euclidean distance map in mul-
ticore processors and GPUs. International Journal of Networking and Computing,
1:260 276, July 2011.

11) Kazufumi Nishida, Yasuaki Ito, and Koji Nakano. Accelerating the dynamic pro-
gramming for the matrix chain product on the GPU. In Proc. of International
Conference on Networking and Computing, pages 320 326, Dec. 2011.

12) MichaelJ. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, 1994.

13) Shane Ryoo, Christopherl. Rodrigues, SaraS. Baghsorkhi, SamS. Stone, DavidB.
Kirk, and Wen mei W.Hwu. Optimization principles and application performance
evaluation of a multithreaded gpu using cuda. In Proc. of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, pages 73-82, 2008.

© 2012 Information Processing Society of Japan

