
IPSJ SIG Technical Report

A Proposal of Skip Graph extension

for load balancing distributed interval matching

Tran Anh Phuong,†1 Yuuichi Teranishi,†2,†1

Kaname Harumoto †1 and Shojiro Nishio†1

In this research, we propose a new overlay network for processing distributed
intervals matching, which is an important task in distributed Content Based
Publish Subscribe system (CBPS) or sensor data sharing. Previous methods
often required high cost in maintaining the balance of the delivery tree, espe-
cially in systems where the subscribing intervals are skewed. A few approaches
based on Skip Graph addressed this problem, but they imposed highly unbal-
anced workload on nodes or introduce high latency during retrieving value. By
extending the Skip Graph with additional states on each level, we enable it
to respond to request faster with lower cost in a more balanced fashion. We
evaluated the proposal method by simulation and confirmed the method’s ef-
fectiveness compared to existing approaches.

1. Introduction

In the recent years, many new advances have been made in the field of wireless
network infrastructure and device manufacture. Internet accessing devices such
as PDAs, cell phones, sensors or surveillance cameras pervade widely in human
life, increasing the amount of data over the Internet at an unprecedented rate.
Also, the emergence of smart phones furthermore empowers users, enables them
to take more advantages of the abundance of data. Convenient, timely and
inexpensive way to access relevant information at a very large scale has become
essential.

As the system continues to grow, the traditional client-server method proves
to be infeasible because of the bottle neck problem, which hinders scalability.
Therefore, much research has tried to achieve higher level of scalability through

†1 Osaka University
†2 National Institute of Information and Communications Technology

the use of distributed overlay network in which devices interconnect indepen-
dently without any central server; hence, there’s less worry about the central
servers become overload. There have been much researches on distributed hash
table (DHT)6),7), in which single key-based queries are forwarded to the match-
ing node. Skip Graph2), a overlay network based on skip lists, is designed to
perform queries based on key-ordering, which enables range matching queries.
These overlay networks allow only single-key matching. That is, these overlay
networks supports an event delivery for single-value subscription of each node.

However, there are many cases that single-value subscription is inadequate. For
example:
• Handling complex constraints such as finding data which is larger (smaller)

than a value, value between ranges in Content Based Publish Subscribe
(CBPS) systems (ex: find all subscriptions interested in computer with
OS=Windows; RAM ≤ 4GB, Price∈($500-$700)

• Handling value covering queries in a sensor network(ex: find nodes with
sensor data covering a specific geographic area)

In such applications, a message delivering system which can deal with interval
subscriptions instead of single-value subscriptions is required.

There have been some researches on handling interval subscriptions using famil-
iar overlay networks such as DHT, tree structured overlay or Skip Graph. How-
ever, these overlay networks pose rather critical problems in real life situations. A
DHT-based overlay network such as Mercury3) often becomes unbalanced among
nodes when the subscriptions are skewed (ex. hot spot). Tree structured overlay
networks such as Pyracanthus1) often have to be built upon other overlay network
for message transporting purpose. Also, if the tree itself is unbalanced, number
of hops will vary largely between routes. Therefore, the tree structured overlays
require tree balancing mechanism. Skip Graph-based approaches overcome such
unbalances but if nodes overlap, and some nodes have very long range of data,
the latency during event delivery process can become very high.

In the present research, we address these problems and propose the Interval
Tree Skip Graph (ITSG), an overlay network based on Skip Graph that handles
interval subscriptions. Our contribution is as below:
• Proposal of ITSG that handles interval subscriptions in a fast, balanced fash-

1 c© 2012 Information Processing Society of Japan

Vol.2012-DPS-150 No.47
Vol.2012-CSEC-56 No.47

2012/3/1

IPSJ SIG Technical Report

ion.
• Proposal of fully distributed algorithms to construct the ITSG structure
• Simulation results and proofs of ITSG’s effectiveness over previous methods.

2. Related Research

Even though the original Skip Graph can only handle single value subscriptions,
some extensions such as Interval Skip Graph (ISG) and Range Key Skip Graph
(RKSG) are able to handle interval subscriptions. Here, we first take a look at
these researches.
(1) Skip Graph
Skip Graph is a Skip List adaptation in the distributed environment. Skip Graph
is suitable to a volatile P2P environment, i.e. it maintains connectivity even when
a large fraction of nodes fail. Figure 1 shows the structure of an overlay network
based on Skip Graph. The numbers in the rounded rectangles represent the
keys of the nodes, while each circle represents that node at a level. Black lines
represent links between nodes. Nodes at the same level connect to each other
using Membership vector generated randomly from an alphabet (in this case,
size of alphabet is 2), so that any nodes have Membership vectors with the same
first i-digit connect to one or 2 other nodes at level i. The Membership vector is
represented by the small number below each circle in the figure.
The retrieval of an individual key is carried out from the top most level of the

node seeking a key. At each node, the query is compared to the node’s key to
decide whether it should be forwarded left or right. It then continues at the same
level without overshooting the key, continuing at lower levels if needed, until it
reaches level 0 (black arrow in Figure 1). From there, either the address of the
node storing the search key, if exists, or the address of the node storing the key
closet to the search key, is returned.
Skip Graph also supports range query. Since keys are arranged in the total order
relation, one simple method is to find the smallest (largest) key possible that
belongs to the range of the query and then forward the query to neighbor nodes
on the left (right) side until the node’s key gets out of the range. By making
use of the higher levels’ links, this process can finish in averagely O(log n) hops,
where n is the number of nodes in the system.

'()* (' +, -* ./

'(

('

./ +,

-*)*

./ '(
)* +,

-*

./ '(

./ '()* (' +, -*

0%1%23/

0%1%23.

0%1%23'

0%1%23)

+,

(' -*

//./ //.. ../ .// /./ ./.

//./

//./

//./

//..

//..

../

/./

./.

.//

../ /./

./.

//./ .// ./.

('

.//

Fig. 1 Search example in Skip Graph

(2) Interval Skip Graph (ISG)
Interval Skip Graph(ISG)4) combines Interval Tree, an interval-based search tree
with Skip Graph to produce an order, distributed data structure aiming at finding
all intervals that contain a particular point or ranges of values. In ISG, the Skip
Graph is extended to store intervals of [lowi, highi] instead of a single-value key
where i is the ID of node. Node indexing is based on the lower bound lowi,
i.e lowi ≤ lowi+1. Another extension in ISG is that, each node now maintains
a secondary key maxi, which is the cumulative maximum of the upper bound
highi, i.e maxi = maxk=0...i(highi). Figure 2 shows an example of the ISG data
structure.
The search algorithm for all intervals containing a value u consists of 2 phases.
First, it searches for u on the secondary key, maxi, and locates the left-most
node with maxi ≥ u (by definition, this data element will have maxi = highi).
If lowi > u, then this interval does not contain u, and no other intervals will, so

2 c© 2012 Information Processing Society of Japan

Vol.2012-DPS-150 No.47
Vol.2012-CSEC-56 No.47

2012/3/1

IPSJ SIG Technical Report

6 9 12 14 16 5

6

12

5 14

16 9

5 6

9

14 16

5 6

5-7 6-20 9-10 12-15 14-19 16-22

Level 0

Level 1

Level 2

Level 3

18

18

18

18-21

18

16 9

7 20 20 20 20 22 22 Max

16

Fig. 2 Interval Skip Graph illustration

the search ends here. Otherwise, the second phase starts with traversing every
node in increasing order of lowi (moving to the right side), returning matching
intervals on the way, until it reaches a node with lowi > u, then the search
finishes.
Searching for the first matching interval of a given value is performed in a manner
very similar to an interval tree. The complexity of search operation is O(log n),
and the number of intervals that match a range query varies depending on the
amount of overlaps. However, in cases that exists an especially long interval, the
number of hops can become very high, like in Figure 2. In real life situation, this
high number of hops is translated into high latency over network.
In order to reduce number of hops in case of long interval, we can apply the search
algorithm with a range-forwarding mechanism, so that in the second phase, query
can be delivered to all potential nodes after a small number of hops. We name this
method Range-forwarding ISG, and denote it as RISG. However, this method still
has lots of no-match nodes, since queries are sent to all the intermediate nodes.
(3) Range Key Skip Graph (RKSG)
Rather similar to ISG, RKSG8) also uses a pair of (low,high) other than just a
single-key value. The difference is that, RKSG maintain information about all the
overlapping intervals (called the containing keys) instead of just the maximum
value. In responding to a search query, RKSG will first find one interval that

6 9 12 14 16 5

6

12

5 14

16 9

5 6

9

14 16

5 6

5-7 6-20 9-10 12-15 14-19 16-22

Level 0

Level 1

Level 2

Level 3

18

18

18

18-21

18

16 9

Containing key

Fig. 3 Ranke Key Skip Graph illustration

contains the queried value. It then looks up among the node’s containing keys
to see which interval contains the value, and forwards the query to those nodes
(Figure 3).
RKSG promises very low latency in retrieving values, as it only takes O(log n)
hops on average to reach the first matched node (if exists) and one another
hop to all the other matched nodes. However, if there are many overlapping
intervals, the first matched nodes will suffer a high workload in finding matched
intervals. Also, insertion procedure requires every newcomer node to computeits
own containing keys, resulting in high number of messages exchanged during
insertion.

3. Interval Tree Skip Graph (ITSG)

We propose a new structure Interval Tree Skip Graph (ITSG), which can over-
come problems in the existing Skip GRaph’s extensions for interval matching.
ITSG involves augmenting nodes with extra maximum values, making it possible
to handle range retrieval with faster speed, lower cost and in a more balanced
fashion. Here, we describe how it can be implemented.
(1) The model

3 c© 2012 Information Processing Society of Japan

Vol.2012-DPS-150 No.47
Vol.2012-CSEC-56 No.47

2012/3/1

IPSJ SIG Technical Report

6 9 12 14 16 5

6

12

5 14

16 9

5 6

9

14 16

5 6

5-7 6-20 9-10 12-15 14-19 16-22

Level 0

Level 1

Level 2

Level 3

18

18

18

18-21

18

16 9

20 15

20

20

19

22

20

15 20 19

 7

Fig. 4 Interval Tree Skip Graph illustration

Each node in ITSG keeps a pair of [lowu, highu] as its data element. Indexing
order still bases on lower bound lowu, i.e. node u will be on the left side of
node v if lowu < lowv. It also maintains some maximum values, each ties to
a different region depends on the position of the nodes, the level at which the
value accounts for, and the neighboring nodes. Figure 4 demonstrates the data
structure of ITSG.
As shown in the figure, each node now maintains a maximum value called the
LeftNeighborMax (LNM) value (represented by the number in the square at upper
left corner of each circle). This value representsthe maximum value of nodes lying
between current node’s left neighbor at a level and the node’s left neighbor at 1
level above. To reason about this structure formally, we need some denotations.
Let u be the node, key(u) be its key value (here, key(u) = lowu), let i (i ≤ 0) be
the level, and we denote the left(right) neighbor of node u at level i as leftu(i)
(rightu(i)). The node’s denotation also refers to its key value in some cases,
which is easily to tell from the context. Now we can define this LNM values
mathematically as following:

LNMu(i) = max(highv|leftu(i + 1) < key(v)|leftu(i)at level 0)
Note that these intermediate nodes are nodes that actually have their keys fall

into this range, which means nodes at level 0, not just nodes at level i. If node
has a left neighbor, this LeftNeighborMax value will be defined. Else, it will
take the value of ⊥. Besides, if node connects to the same node at more than
1 level, this value also becomes ⊥. (If leftu(i + 1) = leftu(i), exists no v such
leftu(i + 1) < v ≤ leftu(i)).
(2) Search algorithm
Given the above-mention data structure, the search operation is rather simple.
First, it looks for the right-most node (highest key) that doesn’t exceed the
query. This step is exactly the same with the search operation in Skip Graph.
Then we broadcast the queries on all levels that have the LNM value higher than
searchKey (Algorithm 1). Each query carries a boundary value, making sure
that query doesn’t overshoot the range that other query has already come to;
hence reduces the number of wasted messages.

Algorithm 1 Search at node u
upon receiving <searchOp, startNode, searchKey, boundary>:
level ← level-1
if self.range contains searchKey then

send <onRangeMatch, u> to startNode
end if
while level > 0 do

if LNMu(level) ≥ searchKey then
if boundary = ⊥ then

send <searchOp, startNode, searchKey, ⊥ > to leftu(level)
level ← level-1

else {boundary 6= ⊥&&leftu(level) > boundary}
send <searchOp, startNode, searchKey, ⊥ > to leftu(level)

end if
level ← level-1

end if
end while

4 c© 2012 Information Processing Society of Japan

Vol.2012-DPS-150 No.47
Vol.2012-CSEC-56 No.47

2012/3/1

IPSJ SIG Technical Report

In this algorithm, we have:

Lemma 3.1. The search operation takes expected O(log n) time in a system with
n nodes

Proof: The first step of the search operation in ITSG is exactly the same with
that in the original Skip Graph, so it runs in O(log n) time. In the second
step, a range-forwarding mechanism is employed to broadcast the messages to
nodes. Queries with ⊥ boundary always takes place at the highest level possible,
therefore it takes about O(log n) time to reach the last possible node. In the mean
time, queries with specific boundary are also forwarded to nodes. Since they are
limited by the boundary, they are expected to run in O(log n) time (where m is
the number of node limited by boundary values, and m<n). Therefore, the whole
search operation takes expected O(log n)*(O(log n)+O(log n)) = O(log n) time
to finish.

Lemma 3.2. In a system with n nodes, each node has to process at most O(log n)
messages during search operation

Proof: During the first step of search operation, intermediate nodes (nodes that
the query passes through) have to process at max 1 messages, while latter during
the second step; each node that receives the query needs to send out at most
the same number of messages with its number of levels. Since ITSG employs the
same structure with Skip Graph, which has O(log n) levels on average at each
node, each node in ITSG has to send out at most O(log n) messages. Therefore,
each node has to process at most O(log n) messages during search operation.

(3) Insert Algorithm
Insert algorithm is also divided into 2 phases. In the first phase, newcomer
node inserts itself into the graph, creating links with neighboring nodes. In the
second phase, request update messages are sent to nodes of the right side of the
newcomer, asking them to update their maximum values accordingly. First, we
introduce another maximum value called the LeftMax (LM) value. This value
represents the maximum of high value among nodes lying between the node itself
and its left neighbor. We denote this value as LMu(i), with u being the node,

and i being the level to which this value belongs. Mathematically:
LMu(i) = max (highv — leftu(i) < v ≤ u at level 0)

LMu(i) can also be defined as the maximum of all LeftMax value of nodes lying
between the 2 nodes (itself and its left neighbor) at level i-1:

LMu(i + 1) = max (LMv(i) — leftu(i) < v ≤ u at level i)
Lemma 3.3. The LeftMax value at level i+1 equals the higher value among
LeftMax value at level i and LeftNeighborMax value at level i.

LMu(i + 1) = max (LMu(i) ,LNMu(i))

Proof: By definition, we have:
LMu(i) = max (highv | leftu(i) < v ≤ u)
LNMu(i) = max (highv | leftu(i + 1) < v ≤ leftu(i))
LMu(i + 1) = max (highv | leftu(i + 1) < v ≤ u)
= max(max(highv|leftu(i + 1) < v ≤ leftu(i)), max(highv|leftu(i) < v ≤ u))
= max (LNMu(i), LMu(i))

With this LM value, we are able to insert newcomer node u into the Graph
and update its maximum values at the same time. The messages that are used
to find neighbors at each level now carry an extra piece of information, which
is the maximum value of the intermediate nodes. For the left side, that value
will become LNMu(i) at level i. Using Lemma 3, LMu(i + 1) can be easily
calculated. The process is continued, until newcomer node finds itself alone at a
level. The newly calculated LM value becomes the value at levelMax, reflecting
the maximum value of all nodes lying on u’s left side, similar to Max value in
ISG.
Update operation starts with the newcomer node u sending itself a request update
message. On receiving this message, u asks all its right neighbors update their
LNM values at corresponding levels. Then u forwards this request to neighboring
nodes on its right side. Each node receives this request message will check its
maximum values at every levels. At level i, if u lies between node v and its left
neighbor, v will have to update its LM , and then ask its right neighbor to update
its LNM . Else, v will update its LNM . This process continues until request
message reaches a node v with highv ≤ highu. There the process stops, and
all nodes now have the correct, up-to-date information of their left side nodes.

5 c© 2012 Information Processing Society of Japan

Vol.2012-DPS-150 No.47
Vol.2012-CSEC-56 No.47

2012/3/1

IPSJ SIG Technical Report

(Algorithm 2)
Lemma 3.4. The update phase of newcomer node u can safely end when update
message reaches the first node v with highv ≤ highu i.e there’s no node needed
to update nodes lying beyond v.

Proof: Let v be the left-most (smallest) node that satisfy highv ≤ highu

(lowv ≤ lowu is obvious since update message is sent to the right)
Let w be any node that is one the right side of v (i.e lowv < loww)
We now prove that, in any cases, w needs not to update its Max value.
If, at any level, the left neighbor of w lies on the left of v (leftw(i) < v), it
means v lies between w and its left neighbor at level i. Therefore, by definition
of LMw(i) : LMw(i) ≥ highv ≥ highu: u doesn’t affect w.
If, at any level, the left neighbor of w lies on the right of (or equals to) v

(leftw(i) ≤ v). Since we have highv ≥ highu and lowv ≥ lowu: u doesn’t
affect w. Therefore, in any cases, a newcomer node u doesn’t require an update
in w.

(4) Delete Algorithm
Delete operation is similar to that of insert operation. When node u wants
to leave the network, it first links together its 2 neighbors (if available), and
then starts sending (delete) update message toward the right side. The message
carries u’s high value highu, and its left neighbor v’s LMv(levelMax). Nodes
that receive the message will remove those values equal to highu, and change it
with LMv(levelMax). The process also ends when update message reaches node
v with highv ≥ highu.

?1 If node u doesn’t have any left neighbor at level i+1, u’s LNMu(i) needs to point to its left
neighbor v’s LMv(levelMax). Whenever LMv(levelMax) is updated, v needs to inform u
about the change to maintain the correct data structure. However v doesn’t know which
node to send this kind of update message to. Therefore, we introduce the LevelMaxNode
list, which holds information of nodes that connect to the current node at level i, i.e if a
node v belongs to node u’s LevelMaxNode list at level i, v = rightu(i) and leftv(i+1) = ⊥.
When node v updates its LMv(levelMax) value, it send a updateLevelMaxOp message to
every node in its LevelMaxNode list, making sure that the data structure is correct.

Algorithm 2 Update phase for newcomer node u at v

upon receiving <updateOp, newcomer, max>

level ← levelMax
if self equals u then

while level > 0 do
level ← level-1
send <updateOp, newcomer, max> to rightv(level)

end while
else {self not equal u}

if LMv(level) < max then
update LMv(levelMax)
send <updateLevelMaxOp, LMv(levelMax)> to nodes that connect to
u at (levelMax-1)?1

end if
while level > 0 do

level← level-1
if leftv(level) < u then

update LMv(level)
send <updateLeftNeighborMaxOp, LMv(level) > to rightv(level)

else {leftv(level) ≥ u}
LNMv(level)

end if
end while

end if
if highnewcomer < highv then

send <updateOp, newcomer, max> to rightv(0)
end if

6 c© 2012 Information Processing Society of Japan

Vol.2012-DPS-150 No.47
Vol.2012-CSEC-56 No.47

2012/3/1

IPSJ SIG Technical Report

0

20000

40000

60000

80000

100000

120000

100 200 300 400 500 600 700 800 900 1000

ISG

RKSG

ITSG

RISG

(a) Insert messages

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

100 200 300 400 500 600 700 800 900 1000

ISG

RKSG

ITSG

RISG

(b) Search messages

0

100

200

300

400

500

600

700

800

900

100 200 300 400 500 600 700 800 900 1000

ISG

RKSG

ITSG

RISG

(c) Number of hops

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 200 300 400 500 600 700 800 900 1000

ISG

RKSG

ITSG

RISG

(d) Fairness Index

Fig. 5 Performance of ISG, RISG, ITSG and RKSG in equally distributed system:
horizontal axis represents number of nodes in the system.

4. Evaluation

We performed a series of experiments to verify the operation and performance of
Interval Tree Skip Graph (ITSG), in comparison with Interval Skip Graph (ISG),
Range Key Skip Graph (RKSG) and Range-retrieval ISG (RISG, as mentioned
in section 2(3)). Data related to traffic during insertion and search operation,
latency over the network and load-balance were measured.

In the first experiment, nodes were equally generated over the data domain in

terms of their postions on the network,i.e. the values of lowu acting as the key
value. Most of the intervals are short (12%-15% of the domain range), only a few
are long (100%). This is to reflect the situation when some“master” nodes store
all the data for redundancy purpose, or in Content Based PubSub system, some
subscribers don’t specific their interest for some attributes. Network size varied
from small (100 nodes) to large (1000 nodes). Figure 5(a) shows the relation
between number of insert messages and number of nodes in the network, while
Figure 5(b) shows the total number of search messages in case of 10 queries.
Figure 5(c) exhibit the varying trends in number of hops until queries reached
all matched nodes. Shown in Figure 5(d) is the Jain fairness index5) of message
processing loads of each methods. This metric is defined as

f(x) =
(
∑

xi)
2

N
∑

x2
i

where xi is the number of messages processed by each node in a system of N

nodes. A fairness index of 1 indicates that the system is equally fair to all nodes;
smaller values indicate less fairness. Here we used number of received and sent
messages at each node as an indicator for workload, and only took into acount
nodes that received (or sent) messages, not the total number of nodes in the
system.

All the four methods exhibit the trade-off between insert and search operation.
In case of 1000 nodes, RKSG required about 97k messages during insertion,
but only 1650 messages during search operation. ISG (RISG) required about
57k/9000 messages, while ITSG needed about 64k/5500 messages. In term of
load balancing, RKSG had the lowest value, since the first-found matched node
forwarded queries to all the other matched nodes, suffering from high workload.
ISG has the best performance in this aspect. ITSG and RISG employed rather
the same mechanism, therefore they have roughly the same value. During search
operation, ISG might need up to 900 hops to reach all matched nodes in system of
1000 nodes. In real-life situation, this translates into a very high latency. RKSG
needed only around 13 hops, which is close to O(log n) + 1 (in this case, n =
1000). ITSG and RISG followed in that order, both required around O(log n)
number of hops.

One another factor that affects the performance of ITSG is the graph’s struc-

7 c© 2012 Information Processing Society of Japan

Vol.2012-DPS-150 No.47
Vol.2012-CSEC-56 No.47

2012/3/1

IPSJ SIG Technical Report

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2 3 5 10

Alphabet  

size

ISG

ITSG

(a) Search messages

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

2 3 5 10

Alphabet

size

ISG

ITSG

(b) Precision Rate

Fig. 6 Effect of different alphabets on the performance of ITSG and ISG

ture, in the sense that the further each node at high levels stays away from its
neighbor, the better the search operation. To confirm this hypothesis, we tried
to configure the Graph’s structure by altering the size of alphabet used in Mem-
bership vector. Each Membership vector is a finite word consists of characters
randomly chosen from the above-mentioned alphabet. The larger the size of al-
phabet is, the less chance that two randomly generated Membership vectors have
the same first i-digit, and therefore, the higher chance for node to link with far
away nodes. We conducted this experiment on a system with most of the nodes
having very short intervals, and only a few nodes with long intervals.

Figure 6(a) shows that the larger the alphabet, the fewer messages ITSG re-
quired to perform search operation. This is because ITSG was able to forward
the queries futher using high levels’links. This also resulted in fewer no-matched
nodes (i.e intermediate nodes that don’t match the query), as shown in Figure
6(b) under the term of Precision Rate. Precision Rate index was calculated by
dividing the number of matched-nodes by the number of nodes that received any
messages. The higher this value was, the fewer no-matched nodes were introduced
during search operation.

5. Conclusion

In the present research we proposed the Interval Tree Skip Graph that extends

the original Skip Graph for interval search purpose. An extra maximum value
at each level of nodes acts as a message-forward indicator, enabling the graph
to decide whether or not it is neccessary to forward the message to that link. A
comparative evaluation with Interval Skip Graph and Range Key Skip Graph was
carried out. Simulation results show ITSG’s effectiveness comparing to previous
methods in term of speed and load balancing. Future issue includes handling
node failure mechanism to maintain the correct data structure of the graph.

References

1) Aekaterinidis, I. and Triantafillou, P.: Pyracanthus: A scalable solution for DHT-
independent content-based publish/subscribe data networks Information Systems,
Vol.36, Issue 3, pp. 655–674 (2011)

2) Aspnes, J. and Shah, G.:Skip Graphs, ACM Transaction of Algorithms, Vol. 3,No.
4, pp. 37, (2007)

3) Bharamble, A.,Agrawal, M. and Seshan, S.:Mercury: supporting scalable multi-
attribute range queries i ACM SIGCOMM Computer Communication Review, Vol.
34, no. 4,pp. 353–366, (2004)

4) Desnoyers, P.,Ganesan, D. and Shenoy, P.:TSAR: a two tier sensor storage ar-
chitecture using interval skip graphs, Proc. of the 3rd international conference on
Embedded networked sensor systems(Sensys),pp. 39–50 (2005)

5) Jain, R. and Chiu, D.M. and Hawe, W.:A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems, DEC Research
Report TR-301, (1984)

6) Maymounkov, P. and Mazieres, D.:Kademlia: A peer-to-peer information system
based on the xor metric. Proc. of the 1st International Workshop on Peer-to-peer
System (IPTPS’02), pp. 53–65, (2002)

7) Stoica, I.,Morris, R.,Karger, D.,Kaashoek, M.F.,Balakrishnan, H.:Chord: A Scal-
able Peer-to-peer Lookup Service for Internet Application,Proc. of ACM SIG-
COMM 2001, (2001)

8) Ishi, Y.,Teranishi, Y.,Harumoto, K. and Nishio, S.:Range Key Extension of the
Skip Graph, Globecom, (2010)

8 c© 2012 Information Processing Society of Japan

Vol.2012-DPS-150 No.47
Vol.2012-CSEC-56 No.47

2012/3/1

